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Summary

A three phase methodology for solving the Bidline problem for airline crew scheduling
is proposed. Phase 1 ensures that the all bidlines will meet a fatigue mitigating
minimum rest window that will be constant throughout the entire bid period. Phase
2 ensures that most of the bidlines follow regular weekly and monthly patterns much
like shiftwork in other industries that have 24-hour-a-day operations. Finally, Phase
3 creates a final monthly schedule that will minimize the number of crews needed
during a bid period to cover all of the pairings, and maintain the fatigue-mitigating
rest window as well as all of the quality of life issues addressed in Phase 2. Along with
this methodology, a heuristic for solving Bin Packing and Cutting-Stock problems is

developed.




Chapter 1

Introduction

1.1 Background

Fatigue is a familiar feeling to all of us. We experience it in various degrees through-
out the day, and often are able to combat it by sleeping or taking a rest. Not all
occupations have this luxury, however. The aviation industry must be able to sup-
port 24-hour-a-day operations to meet industry demands. Therefore, pilots must be

able to fly at all hours of the day.

To mitigate fatigue, the Federal Aviation Administration (FAA) has set rules about
how much time a pilot can fly in a 24 hour period, and how much subsequent rest a
pilot must receive after flying. They have also put flying time limits at other dura-
tions as well. These rules are outlined in Federal Aviation Regulation (FAR) PARTS
121 and 135 [6, 7). While it is the intent of these regulations to protect the public
and promote safety in the airline industry, it is not known how much they actually
prevent accidents and incidents. The U.S. National Transportation Safety Board
(1990) ”Most Wanted Transportation Safety Improvements” list currently includes
a request for the study and revision of hours of service regulations in all modes of
transportation. More recently, in 1995 the FAA proposed a change to FAR parts

121 and 135, citing that “The proposal would update the regulations and replace




certain out-dated regulations with a simplified regulatory approach based upon sci-
entific studies of fatigue.”[11] The airline industry balked at these new rules, and
they have never been implemented by the FAA[16]. In 1999, the idea of aviation pilot
flight and duty regulations and questions of fatigue again arose, this time centered
around reserve crews. The House Transportation and Infrastructure Committee held
hearings to gather information, but again the aviation industry presented many ar-
guments about why the 1995 changes were not appropriate, mainly citing the lack of

any safety analysis and noting that a scientific study needed to be done [17].

1.2 Problem Statement

Along with fatigue , quality of life issues seen in other workplaces are becoming more
important to aircrew members. Regular workshifts, whether they be in terms of a
common weekly or monthly schedule, are being sought after by pilots at many airlines.
The problem for the airlines is to balance the desires of their aircrews with that of
their stockholders. Can airline schedules be built that take into account these quality
of life issues without impacting the overall manpower costs associated with aircrews?
To further complicate the problem, some of the quality of life issues, such as fatigue,
also raise concerns over public safety. Aircrew fatigue contributes to more than 21% of
all errors reported in NASA’s Aviation Safety Reporting System (ASRS)[14, p. 306].
Current aviation pilot duty and rest regulations are out-dated and do not apply what
is now known about fatigue and the effects of our circadian rhythm. Many of these
quality of life issues can be addressed by changing the way scheduling is currently

done at most major airlines.




1.3 Purpose Statement

The purpose of this research is to develop a rule set and solution methodology for the
bidline generation problem that addresses these quality of life issues and mitigates
fatigue. This new methodology will accomplish these tasks without any significant
increase in cost to the airlines, and in some instances may be able to reduce some of

the costs in the planning stages of this process.

1.4 Scope

This research is not intended to be the single solution to fatigue in airline crew
scheduling. It will, however, address those quality of life issues and fatigue problems
that can be handled during the planning phase of crew scheduling. Fatigue induced
by extended duties and shortened rests caused by weather or other unforeseen prob-
lems in the operational setting are not specifically addressed in this methodology,
but the application of the rule set will certainly prevent compounding this fatigue by
an inherently bad schedule. This new methodology is implemented in three phases.
Phase 1 ensures that the all bidlines will meet a fatigue mitigating minimum rest
window that will be constant throughout the entire bid period. Phase 2 ensures that
most of the bidlines follow regular weekly and monthly patterns much like shiftwork
in other industries that have 24-hour-a-day operations. Finally, Phase 3 will create a
final monthly schedule that will minimize the number of crews needed during a bid
period to cover all of the pairings, and maintain the fatigue-mitigating rest window
as well as all of the quality of life issues addressed in Phase 2. The rule set and solu-
tion methodology take into account as many operational aspects of the commercial

aviation industry as possible. Since no commercial air carrier has implemented the




rule set, it will be shown through anecdotal evidence that the rule set contains the
necessary attributes to help mitigate fatigue. To determine if the solution methodol-
ogy is sound, 4 test cases will be run using data from actual airline schedules. The
new methodology will be compared to an actual airline schedule by coverage of flights
with line crews, the amount of pilot rest, and the degree to which quality of life issues
are met. Along with this solution methodology, a new technique for solving Cutting-
Stock and Bin Packing problems was developed to aid in the solution of the Phase 1

problem.

1.5 Format

Chapter 2 provides a discussion on fatigue in the Airline industry and gives an ex-
planation of airline crew scheduling in general. The duty and rest scheduling rule
set and new solution methodology are presented in Chapter 3. Chapter 4 discusses
implementation and test results. Chapter 5 presents conclusions and recommenda-

tions.




Chapter 2

Literature Review

2.1 Introduction

The airline industry in the United States has over 600,000 employees, and flies over
5,800 aircraft. These employees are the largest single cost to the airlines. In order
to keep the labor costs down, airlines need to ensure that air crews are utilized to
their fullest. It is important, however, that these crews are not over utilized to the
point where fatigue can be an issue for passenger safety. This chapter first discusses
circadian rhythms and other contributions to fatigue in the airline industry. Then it

examines airline crew scheduling and current techniques used to build these schedules.

2.2 Fatigue

For most people and even many human factors specialists, fatigue is simply measured
by how long a person does sbmething. Often this is referred to as time on task, or is
equated with the length of a work shift. While time on task is certainly a contributor
to fatigue, there are many other facets of fatigue. These include, but are not limited

to the time of day the work is performed, sleepiness, and work schedules.




2.2.1 Circadian Rhythm

Many of us have heard the phrase “biological clock”, but few of us realize the im-
portance it plays in our everyday life. It is the source of what is now known as our
circadian (circa meaning around, dies meaning day) rhythms. These rhythms have
a period of about a day, and are seen as measurable and stable daily fluctuations in
physiological, psychological, and behavioral functions. These functions include body
temperature, hormone secretion, heart rate, blood pressure, digestion, sensory acuity,
physical and mental performance as well as many others [10]. Circadian rhythms
should not be confused with “biorhythm” which was a popular theory in the 1970’s,

but was discredited in the early 1980’s [14, p. 308].

Before the onset of artificial lighting, humans typically lived in harmony with their
circadian rhythm system, working during the day and sleeping at night. This pattern
is much less common today. Each year increasing numbers of people must work at
times that conflict with their circadian rhythms. Pilots routinely have to fly at var-
ious times of the day or night. Additionally, the substantial irregularity of a pilot’s
duty hours creates more stress in comparison to those of industrial shiftworkers, as

pilots are frequently adjusting their work-rest schedules.

Given the evolutionary legacy and amount to which circadian rhythmicity effects
our every day life, it is not surprising that pilots have difficulty countering its in-
fluences [14]. While our body clock is more than capable of monitoring the passage
of time, it is different than other clocks in that its period is flexible, and must be
constantly synchronized in order to accurately predict the timing of periodic events.

This synchronization is done through external cues that themselves are cyclic, usually




on a 24 hour period. In animals things like sunrise-sunset, ambient temperature, and
food availability as important synchronizing events. While in humans, social time,
work schedules, and group activities are more important, again partly because of the

use of artificial lighting [14].

For pilots flying between different time zones, the external cues change and the cir-
cadian clock can become out of synchronization with its environment. The normal
low in circadian rhythms is best estimated to be between 0200 hours and 0600 hours
home base time. Research indicates that if 3 or fewer time zones are crossed, the
circadian low period will not quickly adjust to the local time. If 4 or more time zones
are crossed, then the circadian low period will remain the same with respect to home
base time for the first 48 hours, then it will be have adjusted to 0200 hours to 0600
hours local time [10]. It is also important to note that not only is the circadian clock
out of synchronization with the external cues, but also each of the circadian rhythms
will be out of synchronization with each other as they all adjust differently. It is
estimated that the circadian rhythms resynchronization can take several days and
differs in length depending on whether the time shift is positive or negative relative
to home time. In all research studies circadian rhythms adjust faster when flying
west, a negative time shift, than east, regardless of what time of the day or whether

the pilot was returning home or leaving home [14].

As mentioned earlier, our circadian rhythms effect when and how we sleep. Many
studies have shown that when we sleep is at least as important as how long we were
awake before we attempted to sleep. The body’s temperature cycle greatly effects

how long we sleep. Going to sleep near the temperature peak results in most REM




sleep occurring in the second half of the sleep span, where going to sleep near the low
point results in a shift of the REM sleep toward the first half [14]. So, the timing of

sleep can definitely affect the quality of sleep.

Circadian rhythms not only control how we sleep, but also influence when we feel
sleepy. Using the Multiple Sleep Latency Test (MSLT), researchers have been able
to identify two periods of time in the day when individuals are their most alert [14].
There is a peak of alertness at 0930 just after a night’s sleep, and then again between
1930 and 2130. This second period of alertness comes after the mid-afternoon pe-
riod, about 1530, where the body exhibits its maximal daytime sleepiness, indicating
that even with no “napping”, the body’s biological clock has some influence on the
underlying level of sleepiness we feel. While sleepiness does not necessarily equate
to fatigue, aviation professionals view it as one of the most operationally significant

aspect of fatigue [14].

While circadian rhythms are not the only factor contributing to pilot fatigue, it is an
important factor to consider when building crew schedules. Disrupting the circadian
rhythm can lead to loss of sleep, decreases in performance and alertness, and even

health problems.

2.2.2 Work Schedules

Most industries that require 24 hour a day operations have developed schedules that
consist of different shifts. The most common breakdown of the day is into three
shifts: days, evenings and nights. While developing the shift idea was simple, deciding

which shift a worker will be assigned to has been an area of intense study (see [20, p.
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Figure 1: Pairing Example 1

1004]). Some believe in rotating each member through each shift, but then there are
disagreements about how fast that rotation should be. Others recommend leaving
workers on a single shift for extended periods of time, citing better performance as
well as a subjective improvement in job satisfaction, health, and well being. In either
case it is important to look at the risks involved with shift rotation and the hazards

associated with working through a circadian low.

2.2.3 Scheduling Sources of Fatigue in the Airline Industry

As discussed earlier, aircrews have varying work-rest schedules. Figure 1 is an ex-
ample of an actual airline crew pairing. It is 3 day pairing from a major U.S. air
carrier that meets all FAA and union-airline negotiated rules. It consists of 5 flight
legs over 3 days and has 3 rest periods. The duty periods are shown in gray with
their corresponding start and end times; all times given are home base times. The
rest periods then are shown as contiguous white blocks. Each rest period is at least
10 hours, with the longest being almost 18 hours. However, the aircrew will have
to adjust their rest time after every duty. This is an interesting pairing, as it has 2
duties in a single day. Both the second and third duties are flown during the time
of day that the crew was at rest the previous day. Similarly, the rest period between
the second and third duties is at the same time of day as the crew was flying the day

before. This means that a pilot will be sleeping at times when the previous day he




was required to be awake and alert, and will be flying at times when the previous day
he was asleep. This type of disruption in sleep patterns definitely leads to fatigue,

and can cause safety problems [20, p. 1029].

These types of disrupted sleep workshifts are not uncommon. Figure 2 is another
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Figure 2: Pairing Example 2

example of the work-rest time shifts just talked about. In this example the first and
second sleep shifts are the same but then a “red-eye” flight is added followed by a
same day duty. In this case not only is the work-rest time shifted, but the final work

day is shortened causing even more circadian desynchronization.

2.3 Airline Crew Scheduling

2.3.1 Terminology

For a passenger, a flight is a trip from a starting location, origin, to a destination.
Often these flights are short in duration, requiring multiple flights to reach the final
destination. This is also true for flight crews. An origin destination pair that is flown
non-stop will be refer to as a flight leg. A duty, then, is a group of flight legs flown in
sequence. Many times a flight crew will have to sit (rest) for a short period in between
flight legs. At the end of a duty a flight crew will be given an overnight rest. This

overnight rest may not occur during hours when it is dark outside. A crew pairing is

10




a sequence of duties and rest periods that starts at a crew base, lasts one to four days,
and usually ends at a crew base. When a pairing does not end with a flight to the
crew base, or if for their next duty a crew needs to get to an airport other than the
one where they have landed, the crew will deadhead to the new location. A deadhead
flight is one in which a flight crew is assigned to a flight leg as a passenger. Finally,
a sequence of crew pairings is called a bidline. This bidline is the schedule a flight
crew will follow for the bid period, usually a month’s worth of work. It is during the
crew pairing generation that cost is most affected, since during this procedure it is
important that the pairings cover all of the flight legs with the minimum excess cost

to the airlines.

2.3.2 Crew Pairing Generation
2.3.2.1 Legality and Rules

There are several difficulties that must be overcome when generating crew pairings.
The first deals with legality of the crew pairing. As previously mentioned in Chapter
1, the FAA has rules governing the amount of time a crew can fly, and how much time
they must be given for an overnight rest. Along with these rules, are the many union
rules agreed to by the airlines regarding work schedules, e.g. how long a crew must
be given between flights, how many flying hours a crew is allowed in a given period,
maximum number of duties or days of work, etc. These rules together combine to
determine the length of a duty period. Usually a duty period consists of around eight
hours of flying, with a total duty duration with sits, in-briefs and de-briefs being

around 12 hours.

11




In addition to the legality concerns for pairings, the cost structure of a flight crew
is complex. The crew has a negotiated minimum hours of pay for various aspects
of the pairing. If the guaranteed hours of pay‘is more than the actual number of
hours of duty, then the crew receives extra pay known as credit. Credit is calculated
as the difference between the guaranteed hours of pay and the actual hours flown
and can be caused by many scheduling situations. The three most common are (1)
long or frequent sits between flights, (2) long overnight rests between duties, and (3)
“deadheading”, usually from their last duty back to a crew base. Credit is calculated

as the maximum of the several different pay guarantees.

Finally there are operational constraints to consider when generating crew pairings.
First, the number of crews available at a crew base will determine the minimum and
maximum number of flying hours available. Second, many airlines prefer to keep the
crews on the same plane during a duty period. This is made difficult as the hub-and-
spoke network of many airlines, designed to give passengers many ways to connect to
other flights, also gives crews many opportunities to change planes. While it is desir-
able to keep crews on the same plane for a pairing, allowing them to change planes
can lead to significantly better pairings. Finally, the length of the pairing has many
operational implications. Long pairings can cause greater difficulty in rescheduling
if weather or other factors cause them to be interrupted, while shorter pairings may

require more crews at each crew base to cover all of the flights.

Adding to the complexity of the rules and legality issues is the shear number of
possible pairings. As alluded to above, the number of legal pairings available due to

the hub-and-spoke network of most airlines can be quite large, over 5 million even

12




with small fleets.

2.3.2.2 Solution Methodologies

The crew pairing problem is an instance of an important class of combinatorial opti-
mization problems known as the set partitioning problem. In the set partitioning prob-
lem thereis aset A = {1,2,...,m} and a collection of subsets {A;} for j = 1,2,...,n.
The problem then is to find a partition of A using the subsets A;. This class of prob-
lems is readily formulated as a 0 — 1 integer program (IP). Given costs c; for each

subset A; and an objective to find the minimum cost partition results in the following

P
min Z CiZj
j=1
subject to (SETPAR)
Zaijzj =1 fori=1,...,m
j=1
z; € ZY forj=1,...,n
Where:
n = the cardinality of the collection of subsets

m = the cardinality of the set A
a;j = is 1if A; contains element ¢ of set A; 0 otherwise.

z; = is 1if A; is used in a partition; 0 otherwise.

The correspondence between the crew pairing problem and the set partitioning prob-
lem is that each element of the set A is a daily flight leg, and each subset A; is a crew
pairing. The cost associated with each crew pairing is usually the minutes of credit,

since the base pay of a pilot is fixed.

13




To solve these large scale IPs, U.S. air carriers have developed various techniques.
Two of them, American Airline’s TRIP (Trip Reevaluation and Improvement Pro-
gram) [1] [2], and Delta’s DOC (Delta Optimization Code) and KORBX will be

discussed. Neither guarantee integer optimality.

In TRIP, the process is started by an initial solution, usually some adaptation of
the previous month’s solution. The TRIP code then iteratively selects and solves
a subproblem to try and improve the current solution. The idea is to choose a set
of flights, and then solve a subproblem using only those flights. This subproblem is
solved to optimality and these pairings are added to the current solution set which
is then re-optimized. The process is repeated in this fashion until no more improve-
ment can be found. As with any subproblem approach, a better solution may exist
even though no improvement from the current solution can be found. To try and im-

prove the solutions found by TRIP some global techniques have been implemented [2].

Delta’s approach is similar in that they too never try to solve the entire IP. Using the
dual prices from the optimal solution of the Linear Programming (LP) relaxation,
they find a “good”, as defined by reduced cost, subset of the pairings. From this
subset of pairings, again the LP relaxation is solved, and some number of the vari-
ables are fixed to 1. Once the variables are fixed either normal branch and bound
techniques are used, or, if the solution is not close enough to a preset solution value
(some factor times the LP relaxation solution), new pairings are generated and a
branch and column generation technique is used. While this technique is proprietary,

a description of a branch and price technique by Barnhart et al can be found in [3].

14




Most recently, in a dissertation at the Georgia Institute of Technology [13] Gopalakr-
ishnan et al used a non-negative least squares (NNLS) approach to solve the crew
pairing problem. This too is a subproblem approach. The NNLS algorithm was used
in a column generation technique to solve the LP relaxation, and simple branch and
bound was used to find an integer solution from some number of columns chosen by

reduced cost.

2.3.3 Bidline Generation
2.3.3.1 Legality and Rules

As with crew pairings, there are legal issues to deal with concerning bidlines. All of
the FAA rules concerning duty and rest in a 24 hour period still apply to bidlines since
pairings may be flown back to back. And, there are also rules in FAR Part 135 and
121 that govern the total number of hours that may be flown in 7 consecutive days, a
calendar month, and a calendar year. Again there are also contract negotiated rules
for bidlines, e.g. maximum number of days of work per month, maximum number of
consecutive days of work, minimum consecutive days off, etc. These rules combine to
determine how many hours of pay and credit each bidline will contain. Typically, a
bidline will consist of between 68 and 78 hours of pay and credit over 12 to 18 days

of work, and use between 3 and 9 pairings.
Operational considerations also affect the bidline process, analogous to those of crew

pairing generation. The number of crews available at a crew base dictate the total

number of bidlines that must be generated, which in turn sets what the minimum

15




and maximum flying can be in the bidline. Many of the airlines have purity consid-
erations, like the idea of crews not changing planes. For example, it may be desirable
for bidlines to be built using the same pairing or trip, or to have all the blocks of
work start on the same day. It may also be desirable to leave say 7 or more days of

consecutive days off so that recurring training can be scheduled.

2.3.3.2 Solution Methodologies

The bidline generation problem is similar to the crew pairing generation problem. It
too can be modeled using the set partitioning problem. In this case each element of
the set A is a daily pairing, and each subset A; corresponds to a crew schedule, i.e.
bidline, for the entire bid period. The cost c; associated with each bidline can take
on many forms. It can be a penalty function determined by how well the purity rules
are met, a utility function based on meeting any number of the contract negotiated
minimums and maximums, or a combination of both. In many cases, the cost values
for each bidline are almost identical and must be dealt with carefully as will be seen

in Chapter 4.

As with crew pairing generation, each airline has its own proprietary techniques for
solving the bidline generation problem. These techniques range from the same tech-
niques used to solve the pairing generation to some newer techniques using TABU

searches [8] and genetic algorithms [4].
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2.4 Conclusion

Since the current solution techniques for the crew pairing and bidline generation
problems only take into account FAA regulations, a new methodology is needed to
further minimize or mitigate in some way aircrew fatigue. Gopalakrishnan et al
demonstrated that fatigue mitigating rules can be enforced in crew pairing generation
with no significant increase in cost [13]. The solution methodology developed in this
thesis demonstrates that bidlines can be generated and schedules found that mitigate
crew fatigue. These bidlines and final schedules meet all of the FAA regulations and
airline contract negotiated rules. Chapter 3 outlines a set of fatigue mitigating rules

and presents the three phase approach to solving the bidline generation problem.
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Chapter 3

Methodology

3.1 Introduction

In this chapter, the circadian rule set and methodology of the three phase approach
to solving the aircrew bidline generation problem is developed. Then, the model

formulations and solution procedures are presented.

3.2 Circadian Rule Set

This rule set is designed to put the crew on a standard workshift like other businesses
with 24-hour-a-day operations, thereby addressing as many of the scheduling and cir-
cadian rhythm influences on fatigue. First, the amount of time between pairings will
be addressed. Second, the duration of the rest between duties will be determined. Fi-

nally, the timing of the rest in terms of when during the day it occurs will be looked at.

To build shifts for the crews, the time between pairings will be considered first. Two
consecutive nights of usual sleep are minimally necessary to stabilize sleep patterns
and return waking performance and alertness to usual levels [10]. While this could
be accomplished in a 36 hour period, the rule for rest between pairings will be a

minimum of 48 consecutive hours with two usual (circadian) 8 hour sleep shifts and
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no flying duties. Ideally these recovery periods should cover the same days of each
week to give a regular workshift; the largest pairings are usually only 3 or 4 days,

so it is possible to build workshifts of 4 days on and 3 days off meeting all requirements.

When considering the time off between duties, a taxonomy for rest periods must be
described. The term rest window will indicate the continuous period of time between
any two duties. A rest window intersection then is the largest continuous block of
time that contains no portion of a duty repeated over a given number of days. When
building pairings and bidlines with a rest window rule, this is simply the intersection
of the rest windows. To account for pairings built without any rest window rules, the
way to calculate a rest window intersection must be altered. For example, looking
back at Figure 1 the intersection of the rest windows is only 1 hour while there is
a block of time from 2100 hours until 0310 hours every day where the crew has no

duty. Thus this pairing has a 6 hour and 10 minute rest window intersection. To see

Table 1: Rest Windows for Pairing Example

Rest | Begin | End
1 1310 | 0310
2 0657 | 1730
3 2017 | 1410

this, Table 1 shows the rest periods for each duty in the pairing. By inspection, the
intersection is from 1310 hours until 1410 hours. Table 2 shows that the latest end
time for a duty is 2100 hours and the earliest a duty begins is 0310 hours. So there
is a block of time from 2100 hours until 0310 hours every day where no duty occurs.

This is in fact the largest continuous block of time with no duty.
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Table 2: Duty Times for Pairing Example

Duty | Begin | End
1 0635 | 1310

2 0310 | 0657
3 1730 | 2017
4 1410 | 2100

Focusing on the rest window intersection duration and rules to build them, more than
just the time spent sleeping must be considered. When a crew ends its duty for a
day and goes into rest status, they must first leave the airport and get to their hotel.
Depending on the time of day, they may need to eat a meal, and as discussed in
Chapter 2, some time will be needed for the crew to get out of the working mindset
and into one conducive for sleep. Similarly, before the crew reports for their next
duty they will need to get back to the airport, eat any necessary meals and get back
into the mindset of preparing for a flight. While the time to do all of these things
varies widely by the individual, an hour on either end of the sleep time does not sound
unreasonable. Adding this to a standard 8 hours of sleep establishes a rest window of
10 hours as the minimum number of hours for a rest window. It is important to note
that while it is easy to build this duration of a rest window for a single duty, building

pairings and bidlines that maintain this 10-hour rest window is much more difficult.

What needs to be addressed next is when this rest window occurs in the day. Our cir-
cadian rhythms are at their lowest typically between 0200 hours and 0600 hours home
base time of every day[10]. Ideally, the rest window should encompass the entire low
in circadian rhythm. This leaves a range of time from 2000 hours on the current day

until 1200 hours the next day in which to fit at least 10 hours of the rest window. The
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next best rule would be to try to capture a large portion of the circadian low, say 50%.

Obviously, it will not be possible to achieve this for all duties. As flying is a 24-
hour-a-day operation, there are crew base and fleet combinations where flights will
occur during the times of lowest circadian rhythm. These flights are often referred
to as “red-eye” flights, and there are several ways to deal with them. First, every
attempt will be made to schedule these flights as the last flight leg in a pairing, and
this leg will not be included in the rest window intersection calculation. This way,
any fatigue brought on by activity during the circadian low will not be experienced
in or compounded by any subsequent flights. Instead, the “red-eye” flight will be

followed by the recovery period of at least 48 hours of no duty.

This, however, will not be possible for “red-eye” flights that do not return the pi-
lots to their crew base. For these “red-eye” flights, one of two rules will be used.
First, for flight legs to destinations that do not have multiple recurring daily flights,
or will arrive at a time when FAA required minimum rest times will not allow the
crew to connect with a departing flight until the next day. When this happens a
forced extended rest window will occur. These rest windows will automatically be
larger than 10 hours, and usually exceed 24-hours. This 24-hour rest period should
allow the crew to rest at the appropriate time with respect to whatever rest window
intersection the other flights enforce. In these cases, the duty times of the “red-eye”
flight will be ignored, and the 10-hour rest window intersection will be built with
other duties in the same way. Finally, if necessary the same rules as for other duties
will be used, and a regular work schedule with a minimum 10-hour rest window will

be built ignoring the circadian low.
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For a typical shiftworker, there is a rest window intersection of 12 to 16 hours that,
depending on shift rotations, will remain constant for a long period of time, commonly
a month or more. Mirroring this idea in the aviation world can be difficult as a single
shift for a crew could last 12 or more hours, leaving a very narrow time in which to
find a rest window intersection that meets the criteria. The idea is to form pairings
with a rest window intersection that meets the criteria, and then bidlines whose rest
window intersection meets the criteria. If this is accomplished, the schedules will have
a block of 10 continuous hours each 24-hour period for an entire month in which the

crew will never have duty scheduled.

Building these pairings and bidlines is no more difficult than building current ones.
In simplest terms the rest window intersection criterion is a filter to run the pairings
and bidlines through. Gopalakrishnan et al has shown that there are still a significant
number of pairings remaining that meet these criteria [13]. So what is left to show
is that these pairings can be combined into bidlines and a schedule that meets all of

the other FAA and negotiated rules.

3.3 Three Phase Approach

This section describes a three phase approach for building aircrew schedules. The idea
is to split the bidline problem into three separate, less complex optimization prob-
lems: Phase 1, Phase 2 and Phase 3. Phase 1 finds multi-sets of non-dated pairings
that are feasible to form a bidline with respect to a certain rule-set and together cover

the occurrences of each pairing during the bidperiod. Such a multi-set will be referred
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Table 3: Rule Set for 3 Phase Solution Methodology

Phase | Rule Variable
1,2,3 | Bidlines must meet a minimum Pay and Credit Mingeait
1,2,3 | Bidlines cannot exceed a maximum Pay and Credit Mazxoredit
1,2,3 | Bidlines cannot exceed a maximum number of total pair- | MaZpqirings
ings used
1,2,3 | Bidlines cannot exceed a maximum number of total days | MaTyorkdays
of work
1,2,3 | Bidlines must meet a minimum rest window intersection | Min cst window
amount
2,3 | Bidlines cannot exceed a maximum number of flying | Mazy,
hours in a 7 day window
2,3 | There can be no single days off
2,3 | A bidline cannot work more than 5 consecutive days

to as a “pattern”. The rule set for Phase 1 consists of only those rules which do not
depend upon the start and the end date of a pairing, e.g. the minimum credit that
a bidline must satisfy. Phase 2 takes the patterns chosen in Phase 1 and uses them
to generate bidlines as follows. Each non-dated pairing in a pattern is substituted
by its set of dated pairings so that each pattern yields its corresponding set of dated
pairings. Bidlines are generated from these sets of dated pairings with respect to all
the rules that were not enforced in Phase 1. Phase 2 tries to cover every dated pairing
using “good” bidlines. Finally, Phase 3 tries to cover only those dated pairings not
covered by Phase 2. In Phase 3 all possible patterns are used, but only those dated

pairings not covered in Phase 2 are used.
Table 3 shows all of the rules and the phase of the problem in which they are enforced.

Along with each rule is a variable that will be referenced throughout the remaining

chapters. Chapter 4 will discuss the effect of these variables.
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3.3.1 Phase 1

This section presents the Phase 1 mathematical formulation, and solution methodolo-
gies. First, the Phase 1 problem is discussed. This is followed by the description of the
Phase 1 mixed integer problem (MIP). Finally, the Phase 1 MIP solution algorithm

is discussed.

3.3.1.1 Problem Description

Simply stated, the Phase 1 problem is to find a minimum a set of patterns that covers
all of the pairings to be flown for the bid period. When talking about patterns there
are two measures used, the size of the pattern, i.e. the total number of pairings in
the pattern, and the number of unique pairings used in the pattern. For example,

this pattern

T
[3333888

has a size of 7 pairings, but uses two unique pairings, pairing 3 and pairing 8. The

Phase 1 problem can be represented as

min Z C;T;
j=1
subject to (IP 1)

Z'Pijmj =Di for 1 = 1,...,m

j=1

;€ ZT forj=1,...,n
Where:

n = the number of patterns generated
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m = the number of pairings

¢; = the cost of using pattern j.

P,; = the number of times pattern ¢ uses pairing j.

D; = the number of times paring 7 is flown in the bid period
z; = the number of times pattern j is chosen

For this research, each column is a pattern of pairings that meets the following rules:
1. the sum of the credit of the pairings in the pattern is greater than or equal to the
minimum pay and credit, 2. the sum of the credit of the pairings in the pattern is
less than or equal to the negotiated maximum pay and credit, 3. the number of days
worked is less than or equal to the maximum number of negotiated work days, 4. the
total number of pairings in the pattern is less than or equal to the maximum number
of pairings to be used in a bidperiod, 5. the pattern must have a valid rest window
intersection. There is a row for each pairing flown during the bid period. Using this

formulation, the Phase 1 problem is similar to the bin packing problem [5, p. 195].

3.3.1.2 The Bin Packing Problem

The bin packing problem is well studied in integer programming. In one dimension,
there are a number of items with the same characteristic, say weight. These items
must be placed in bins for holding. The bins have a limited capacity based on the
characteristic being measured. The goal is to use as few bins as possible to hold all of
the items. For this representation, a pattern then tells which items are being placed
together in a bin. The bin packing problem is formulated exactly as IP 1. Each row
represents a different size of an item, and ¢; = 1 for all j in order to minimize the

total number of bins used. Also, each pattern need only satisfy one rule: the sum of
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the measurements of the items must be less than or equal to the capacity of the bins.
Since the number of patterns can be quite large, the bin packing problem has been

solved in the past using delayed column generation[5, p.198].

The LP relaxation of IP 1 is solved with a set of starting patterns. Next, a col-
umn can be generated by solving the knapsack problem as given by IP 2 using the

dual values from a current solution as the objective values for each item size.

n
max E ,LLJ' a;
=1

subject to (IP 2)

n
ijaj < Capacity

=1
a; S Z+
Where:
n = the number of different size items.
u; = the dual value from the current solution for item j.
a; = the number of times item j is placed in the bin.
w; = the weight or other characteristic of item j.

Since the bin packing column generation problem has only a single constraint, i.e.
a knapsack problem, it can be solved efficiently, for small right hand sides, using
dynamic programming[18, p. 433]. The column generation problem for the Phase 1
problem, however, has many constraints that a pattern must satisfy, and a single ob-

jective knapsack problem will not work. The column generation technique for Phase
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1 is discussed in Section 3.3.1.3. Not only is dynamic programming efficient, but it
allows for more than just the optimal pattern to be found. At this point either the
column with the highest reduced cost, or any number of columns that have a good
reduced cost, can be added to the problem. Then the LP relaxation is resolved. This
process repeats until an optimal LP solution is found. However, passing from an opti-

mal fractional valued LP solution to an optimal integer valued solution is not easy [5].

The most direct way is to use branch and bound techniques which can be found
in all commercial solvers. However, these techniques tend to be very slow for large
problems, and cannot be guaranteed to find an optimal solution given only a portion
of columns of the original problem, as happens when using delayed column genera-
tion. Many heuristics have been developed to solve this problem. One method, the
first-fit decreasing algorithm has a guaranteed performance that if n bins are needed
in the optimal integer valued solution then at most lg—ln + 4 bins will be used by its

solution [5].

When the righthand sides of the bin packing problem get large, the bin packing
problem is known as the cutting-stock problem. This problem arose from the man-
ufacture of materials such as paper, textiles, metallic foils and the like. Large rolls
called raws are cut into smaller rolls known as finals. The cutting is done on ma-
chines by knives that slice the raws into finals in much the same way that bread is
sliced. In the cutting process, there is a cost associated with changing the knives on
the cutting machines to begin a new pattern. To try and minimize this cost, a best
optimal solution will use each pattern as many times as possible. While this is not

a requirement for the bin packing problem, it does lead to a heuristic that can solve

27




Table 4: All Maximal Patterns for Bin Packing Example

1;:::1115 Maximal Patterns
8 olojoflofjo|o|jo|ty1 |ty ]|11]2]|2]12|12]2]|3]3]13]|3]4]|5]6
10 olo|1|1|2]|3]|5|0j0]|1]|2]|3}4]|0]1]1]2|3|0|{0}1]2]|0]|1]D0
12 2/4lo0|3|2|0|l0]jo(3|(1j0|1jo|1|o|2|1]0]|0|2|1]|0]|1]|D]O
20 i|lo|2|o|lo|1]o0]2]0]|1]|1]|0]JO]jt]|]1|D]|]0O|0O|1]|0O|C|O|D]|O]O
m{g;lls44485046445050484450485048484650484644484644445048

the Phase 1 problem and other similar bin packing problems.

The following example will be used to illustrate this heuristic. Let a bin have a
capacity of 50, with 50 items of weight 8, 60 items of weight 10, 28 items of weight
12 and 19 items of weight 20. For a problem of this size, all patterns (bin packings)
that are maximal is size can be enumerated. Table 4 shows every maximal pattern
for the example. While there are other combinations of the final widths, all others
either exceeded the capacity of a bin, or have enough slack to allow another item to
be placed in a bin. While the patterns do not have to be maximal in terms of weight,

a minimum capacity will be enforced, as it leads to better solutions.

This heuristic builds maximal columns for every pattern. A maximal column is
a column that represents using pattern j, k; times. A new column is added to IP
1 with Pj(n4j) = k;Fi;, where j is the index of the column, and n is the total num-
ber of patterns in the original problem. The objective value coeflicient must also be

adjusted. The new maximal column will have a cost

Cntj = BONUSTH.](CJ)
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This new maximal column will be a 0 — 1 integer variable instead of a general integer,
and the BONUS term will be used to direct the solution. If BONUS,; is anything

other than k;, a constraint of the form

n

> (5 + s ) = Diff = (LR (1)

j=1
must be added to ensure the minimum number of patterns are used. Here LFPy; is the
optimal objective value of the LP relaxation of the original problem without maximal
columns. Diff is a variable to capture how much the IP solution is different than
the LP solution, and has a big M penalty associated with it in the objective function.
So, the initial heuristic IP is given by IP 3.
min ) | (cjmj + BONUSn+ja:n+j> + M+ Dif f
j=1

subject to

Y Pyz;=D; fori=1,...,m

j=1

Z <.’L‘j + kn+j$n+j) —Diff= [(LPObj)] (IP 3)
j=1

z;, Diff € Z* forj=1,...,n

Tpp; EBT forj=1,...,n

Since every original pattern is maximal with respect to the capacity of a bin, it makes
sense to build maximal columns for all of them. The simplest way of calculating the
value of k; is to use the following equation:

ufl2)

[3




Table 5: All Maximal Columns for Bin Packing Example

Final Maximal Columns

Widths

8 gio|lo|o|o|0|(0}|9|9(19[19]20]15|38(33(28|50]|40(48]42]48[43|48]|50]48
10 olo|9|9 2857|601 0|0 ]19(38|60]{60{ 0 |19(14]|50|60( 0|0 {16]32(0]10]0
12 281280 (27(28| 0|00 |27{19|/ 0|20 0{19|0|28|25| 0|0 |28}16|{0 |12{0]D
20 14l 0(18|o |0 19| 0 |18| 0 {19|19| 0O |19|19|0 |0 |0 (16| 0D j0O}{0[0|O]D
k 1417 |9 |9 [14]19(12}9 |9 |19]|19]|20(15]19[19]14]|25]|20|16]|14}16|16|12|10] 8

However, there may be some physical information about the problem that would give
us a better bound. For example, in the cutting-stock problem, if a machine must be
adjusted after 50 raws have been cut, then k; can be set as the minimum of equation
(2) and 50. Further, it may also be beneficial not to choose k; at its maximal value
at all. The problem itself may show a relation between the values of F;; and D;. In
this case you would want to choose k; that exploits that relation. For example, in the
Phase 1 problem for a month with 30 days, many of the righthand sides are 30. By
choosing a maximal value of 5 for k; it is more likely that a combination of maximal
columns will sum to 30. If 7 is chosen, then there is no combination of maximal
patterns that will sum to 30, and the remainder of the righthand side will have to be

filled in by one or two non-maximal columns.

Solving the example problem using equation (2) to calculate the k;’s results in the
maximal columns shown in Table 5. Using CPLEX version 6.5 with its default set-
tings, the solution to IP 1 using the patterns in Table 4 is shown in Table 6. This
solution uses 11 different patterns, and a total of 35 bins. Adding maximal columns
for only those patterns which use a whole bin, CPLEX returns the solution in Ta-

ble 7 While none of the maximal columns were chosen, the negative coefficients in
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Table 6: Solution Values for Bin Packing Example

Variable | Value
x2
x3
x5
x7
x9
x10
x16
x20
x22
x24
x25

p—

s N et A B N B G RV

Table 7: Solution Values for Bin Packing Example With Maximal Columns for Full
Bin Patterns

Variable | Value
x1 1
x2 5
x3 9
x5 3
x7 7
x24 10
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Table 8: Solution Values for Bin Packing Example With All Maximal Columns

Variable | Value Variable | Value
x18 1 x18 1
x27 1 = | x2 7
x31 1 x6 19
x50 1 x25 8

the objective function altered the search strategy for CPLEX, allowing it to find yet
another optimal solution, this time using only 6 different patterns and a total of 35
bins. Finally, the solution to IP 3 which has all of the maximal columns is shown in
Table 8. This is the best optimal solution using a total of 35 raws but only 4 different
patterns. For this example, all of the columns were used. In real world problems, the
delayed column generation technique will only generate some of the columns. The
columns generated will be solved to an optimal LP solution, but there is no guarantee
that the heuristic acting on only the columns from column generation will be able to
find an optimal solution. This heuristic was used to solve the Phase 1 problem, and
results from both those solutions and the solutions of other bin packing problems will

be presented in Chapter 4.

3.3.1.3 Solution Procedures

Since the Phase 1 problem is the same as the bin packing problem, some of the same
solution techniques can be used, the first being delayed column generation. Problem
COLGEN shows a column generation IP problem for Phase 1. First, the rest win-

dow intersection rule enforcing constraints will be discussed.
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Usually, the rest window starts in the evening of one day and ends in the morn-
ing of the next. Changing the way the times are written makes find the rest window
intersection easier. Let 0000 hours of the beginning day of rest be time 0. Then sim-
ply counting the minutes, 48 hours later would be time 2880 or 2,880 minutes later.
Using this time notation, a usual rest window would start before time 1440 (midnight
crew base time) and end some time after it. However, for “red-eye” flights and even
some late ending pairings, it is possible for a rest window to start after midnight,
and end before midnight the next day. In these cases, both the start and stop times
of the rest window will be less than 1440, or greater than 1440. For example, if a
rest window went from 0100 hours until 1300 hours it could either be changed to 60
until 780 or 1500 until 2220. When this happens, for completeness, the pairing is
duplicated, one with each representation of the rest window. In the IP description, a
prime symbol (’) is used to indicate the duplicates of the pairings with these types of

rest windows.
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COLGEN

maXZMj(Sj + 57) (3)

j=1
subject to
E(Sj + 3;) < Maxpairings (4)
=1
Zd]’ (8_7‘ + S;) < Mamworkdays (5)
=1
ZCJ'(S]' + 3;) S Maxcredit (6)
=1
ZC]'(SJ' + 3_,7) > Mincredit (7)
=1
S; .
Iy
y—32 20 Vi 9)
J
Yj +y} <1 Vj (10)
start;y; + start;y; < Restoars Vj (11)
endjyj + endjy;- > Resteng V] (12)
ReStend - RCStstart > Minrest_window (13)
0<s; <b (14)
0< s < b (15)
8,85, Restsars, Resteng € Zzt (16)
v;,y; € B (17)
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end;
end;
Reststart
Restend
Sj

s

Yj

!

Y;

Since the objective is to find the best column to enter the basis, equation (3) tries
to maximize the reduced cost of the pattern. Equations (4) - (7) enforce the rules
agreed upon through negotiations or FAA regulations. Equations (8) - (13) are used
to determine the rest window intersection for the pattern. Equations (8) - (9) force
indicator variables that show which pairings are in the pattern. Equation (10) ensures
that only one instance of any pairing that has been duplicated is used. Equation (13)
requires the rest window to be at least the minimum required length. Equations (11)

and (12) determine the start and end time of the patterns rest window intersection.

the number of pairings.

the dual value for pairing j from the current solution.
the number of days of work in pairing j.

the pay and credit in minutes for pairing j.

the number of times pairing j is used in the bid period.
the start time for the rest period of pairing j.

the start time for the rest period of pairing j.

the end time for the rest period of pairing j.

the end time for the rest period of pairing j.

the start time for the rest period of the pattern

the end time for the rest period of the pattern

the cardinality of pairing j in the pattern.

the cardinality of pairing j in the pattern.

1 if pairing j is in the pattern, 0 o.w.

1 if pairing j is in the pattern, 0 o.w.
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The final 4 constraints bound the number of times a pairing can be used in a pattern,

and also indicate whether variables are binary or general integers.

Given n pairings, there are at most 2n general integer pairings with an upper bound
less than or equal to MaZpgirings, 2n binary variables, and 5n + 5 constraints. While
this problem looks daunting, for a typical crew scheduling problem, the number of
pairings n from the optimal solution of the crew pairing problem is less than 50, and
MazZpgirings is less than 10. The total number of variables even with all pairings being
duplicated then is less than 200 with 255 constraints. Commercial solvers have no

problem finding an optimal integer solution to this problem.

Furthermore, Johnson and Barnes [15] have shown that even this multi-objective
knapsack problem can be solved using dynamic programming. In this case, each ob-
jective forms a dimension of the dynamic program array. The more objectives there
are the larger the dimension of the dynamic programming array. A discussion of the

dynamic programming implementation is in Chapter 4.

Once a column generation scheme has been used to solve the LP relaxation of the
Phase 1 problem, an integer solution to the problem must be found. To do this the
heuristic discussed in section 3.3.1.2 will be used. Equations (18) - (22) show the final
Phase 1 MIP. Equation (19) ensures every pairing is covered. Equation (20) ensures
that no more patterns are used than there are crews available. Equation (21) is the
amount of scheduled pairings, reserve crews are allowed to fly. And, equation (22)

puts an upper bound on the number of times pattern j is used.
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The problem may not even be feasible. The infeasibility question is handled in two
ways. First, reserve crews can be used. These crews are not given a regular schedule
to fly. They fill in when scheduled crews cannot meet their scheduled commitments
due to delays causing extended flying and therefore extended rest, illness, etc. Most
airlines have an amount of infeasibility in terms of pay and credit that they will allow
not to be scheduled for line crews. The assumption is that reserve crews will fly the
pairings not assigned to line crews during the bid period. Equation (21) represents
this way of dealing with infeasibilities. Second, artificial variables are used for each

pairing and a Big M method tries to reduce the amount of infeasibility if any exists.

Phase 1 MIP
min z(wj - ¢jz;) + Z Myys + Z Moz, (18)
j=1 i=1 i=1
subject to

> Pjwj+Y MPyzj+yi+z=D; fori=1,...,m  (19)

j=1 j=1
Z(w]' + le’j) S LC (20)
j=1

> PCy: < RPC (21)
i=1

wj+cz;<c forj=1,...,n (22)

w; € ZY forj=1,...,n
z; €{0,1} forj=1,...,n
3y € ZT fori=1,...,m

z€ZY fori=1,....m
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Where:

n = the number of patterns generated

m = the number of pairings

w; = the number of times pattern j is chosen

z; = 1, if maximal pattern j is chosen. 0, o.w.

Yi = the number of times pairing ¢ is covered by a reserve crew

Z; = the number of times pairing 7 is not covered

¢;j = the number of times a pattern was combined to form maximal pattern j
M; = the penalty for allowing a pairing to be covered by a reserve crew

M, = the penalty for not covering a pairing

P,; = the number of times pattern j uses pairing .

MP;; = the number of times maximal pattern j uses pairing .

D; = the number of times paring 7 is flown in the bidperiod
LC = the number of line crews available for the bid period
PC, = the amount of pay and credit in minutes for pairing k

RPC = the amount of pay and credit in minutes allowed to be not scheduled for

line crews for the bidperiod

The Phase 1 solution algorithm has gone through many changes, with two techniques
working equally well. The differences between the techniques deals mainly with user
preferences regarding purity. As was discussed in Chapter 2, many airlines have pu-
rity rules regarding the types of schedules desired. Two types of purity that seem
to hold for most airlines are trip purity and day purity. First, some definitions are

needed.
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Pairing 1 Pairing 2 Pairing 3

Day Orig. | Dest. Orig. | Dest. Orig. Dest.

LAX | ATL LAX | ATL LAX ATL

ATL | BNA ATL BNA

1 BNA | ATL BNA ATL

ATL | SAV ATL | SAV ATL SAV
Rest at SAV Rest at SAV Rest at SAV

SAV | ATL SAV | ATL SAV ATL

2 ATL | PHX ATL | PHX ATL PHX
Rest at PHX Rest at PHX Rest at PHX

PHX | ATL PHX | ATL Deadhead PHX to ATL

3 ATL | MIA ATL | MIA ATL | MIA
Rest at FLL Rest at FLL Rest at FLL

FLL | TPA FLL | TPA FLL TPA

4 TPA | LAX TPA | LAX TPA LAX
Begin days off Begin days off Begin days off

Figure 3: Pairing Similarity Example

A trip will be defined as the pairings between any two continuous periods of days

off. A period of days off will consist of two or more consecutive 24-hour periods of no

duty, each assumed to contain an 8-hour rest period. So, a trip could be a single 4

day pairing, or it could be two 2 day pairings flown with no days off between them.

Then a trip pure schedule would mean that every trip flown during the bid period is

the same. Pairings will be considered similar if their rest windows occur at the same

geographic location and on the same day of the pairing. For example, the pairings in

Figure 3 would be considered similar. They do not fly all of the same flights, but end

up every rest window in the same geographic location and fly most of the same flight

legs. Bidlines that included any combination of these pairings would be considered

trip pure.
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Day purity deals only with what day the trip starts, and not where it goes. A
day pure bidline has all of its trips start on the same day of the week. This combined
with the rest window intersection rules, builds a regular work schedule comparable
to shiftwork. Day purity is not handled in Phase 1 since the days a pairing will be
flown on are not considered. However, depending on how important trip purity rules

are determines which solution technique to use to solve the Phase 1 problem.

If trip purity is important, then all patterns that use 1 unique pairing are gener-
ated. These patterns will not be used to solve Phase 1 MIP. Since these patterns
are all trip pure, they will be passed on to Phase 2 along with the other patterns
chosen by solving Phase 1 MIP. To solve Phase 1 MIP the following algorithm is

used:

Phase 1 MIP Solution Algorithm

Initialize Phase 1 MIP with all patterns using exactly 2 unique pairings.
Solve LP relaxation of Phase 1 MIP
Initialize num_unique_pairings to 3.
While LP relaxation solution not optimal.
While columns built using num_unique_pairings price out to enter
basis.
Use column generation to solve the LP relaxation of Phase 1
MIP
num-unique_pairings + -+
Generate cutting planes for maximal column binary variables.

Change objective coefficients and employ maximal column heuristic.
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All patterns using a single unique pairing, and all patterns found in the optimal so-

lution of Phase 1 MIP will be passed to Phase 2.

If trip purity is not that important, then all single unique pairing patterns are not
forced on to Phase 2. Instead, the same algorithm as above is used except the prob-

lem is initialized with all patterns using less than 3 unique pairings.

Just before the maximal column heuristic is invoked, a number of cutting planes
can be generated based on the coefficients of the maximal columns in each row and
the corresponding righthand side. Many of the coefficients are within a factor of 6
of the righthand side. The magnitude of the coefficients limits the total number of
maximal columns that can be positive. While not all possible limiting cutting planes
are generated at this step, one cutting plane is generated for every row for each factor
from 1 to 6. Section 4.1.1 and equation (23) give a mathematical description of these

cuts.

3.3.2 Phase 2

This section presents the Phase 2 mathematical formulation, and solution method-
ologies. First, the Phase 2 problem is discussed. This is followed by the description
of the Phase 2 MIP. Finally, the Phase 2 MIP solution algorithm is discussed.

3.3.2.1 Problem Description

The Phase 2 problem takes the patterns generated from Phase 1 and builds feasible
dated bidlines. By using only the patterns from Phase 1, the solution space that will

be searched is significantly reduced. Since the patterns chosen from Phase 1 provide a
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good non-dated solution to covering all of the pairings, the hope is that these patterns

can be dated and coverage will remain high.

As with Phase 1, while complete coverage is desired, it may not be feasible. The
same kind of reserve crew pay and credit constraint and artificial variables will be
used to handle any infeasibilities. Phase 2 MIP shows the set partitioning formu-

lation of this problem.

Phase 2 MIP
min chxj + M;y;
j=1
subject to
ZBijxj—}-yi =1 fori=1,...,m
j=1

f: PCiy; < RPC

i=1

z;€BY forj=1,...,n

y; >0 fori=1,...,m

Where:

n = the number of bidlines generated

m = the number of dated pairings

¢; = the utility of using bidline j in the schedule.
B;; = 1if dated pairing ¢ is used in bidline 7, 0 o.w.

PC; = the pay and credit for dated pairing <.
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RPC = the amount of pay and credit in minutes allowed to be not scheduled for
line crews for the bidperiod
z; = 1if bidline j is chosen, 0 o.w.

y; = 1 if dated pairing 7 is not scheduled to a line crew, 0 o.w.

This problem can also be thought of in terms of graph theory. First, let every dated
pairing represent a node in a directed acyclic graph (DAG), and then add arcs between
nodes if they can legally follow each other in a bidline. Then, each bidline would rep-
resent a path in this graph, and an optimal solution would be a set of vertex disjoint
paths. Another way is to look at the conflict graph generated by the bidlines. Each
bidline represents a node, and then an arc will exist between two nodes if they both
use the same dated pairing. In this representation, each dated pairing forms a clique,
and a node can belong to as many as MaZpqirings cliques. These representations will

both be discussed again in section 3.3.2.2.

During Phase 2 only bidlines that satisfy the purity rules will be considered. The
number of bidlines generated then at this stage will greatly depend on the purity
rules. Since dated pairings are used now, the day purity rule can be enforced. Those
bidlines that satisfy both trip and day purity rules will be considered “perfect” bid-

lines.

3.3.2.2 Solution Procedures

There are many solution techniques to solve the set partitioning problem. And, while
the problem is much smaller compared to looking at all dated bidlines, there are still

enough bidlines that even the best commercial solvers cannot find an optimal solution
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to the problem quickly, results will be discussed in Chapter 4. Again, a delayed col-
umn generation technique will be used here as in Phase 1. Depending on the number
of bidlines generated, they can be stored directly or re-generated at each iteration of

the delayed column generation.

As with Phase 1 first a set of good columns is needed to start the delayed column
generation. Again, enumeration provides a quick way of doing this. The following

algorithm is used to generate the initial set of columns for Phase 2.

Algorithm to find initial column set

Sort patterns by unique pairings smallest to largest.
Enumerate all feasible bidlines.
While perfect bidlines remain not set to 0.
Choose first perfect bidline available and set to 1.
Set all conflicted bidlines to 0.
While trip or day pure bidlines remain not set to 0.
Choose first trip or day pure bidline and set to 1.
Set all conflicted bidlines to 0.
Add all bidlines with a conflict number of 1 to all bidlines chosen.

Solve Phase 2 MIP with these bidlines only.

In the algorithm to find an initial set of columns, a conflicted bidline is one where any
of its dated pairings is covered by the previously chosen bidlines. The conflict number
of a bidline is the number of dated pairings in the bidline not covered by any chosen

bidline. A conflict number of 1 indicates that exactly one of the dated pairings of the
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bidline is not covered by any chosen bidlines. Once the optimal solution has been
found, those columns are used to start the delayed column generation for Phase 2

MIP.

This makes a good set of initial columns for several reasons. First, all of the while
loops are quick, simple depth first searches and take time O(n). Second, by putting
all patterns with 1 unique pairing up front, once a perfect bidline is chosen, by virtue
of the enumeration scheme, the next available perfect bidline from that pattern will
be a day shifted version of the previous one. Third, this guarantees a large number
of perfect bidlines in the final schedule. Finally, in practice these columns form at
least a 50% solution and significantly reduce the amount of time spent in the delayed

column generation portion of the Phase 2 Algorithm.

Once a starting set of columns has been found the delayed column generation al-
gorithm is used to solve the LP relaxation of Phase 2 MIP. The set partitioning
problem though posses some difficulties for a sub-problem approach. These difficulties
will be discussed in Chapter 4. Finally, once a set of bidlines that optimally solves
the LP relaxation has been found, an integer solution to the problem is needed. Here,

a clique based fixing heuristic is used.

Using the conflict graph of the problem, each row then is a clique in that graph.
If a variable in a clique is fixed, then all other variables in that clique are set to 0. In
addition, any other cliques to which this bidline belongs are also set to 0. If a bidline
in a large clique is chosen, it is possible that another row is a sub clique, and then

that pairing is guaranteed to not be covered. To avoid this, the cliques are sorted by
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size, and a variable is fixed to 1 in the smallest remaining clique. The variable to be
fixed at 1 can be chosen in several ways. The largest valued variable from the current
LP relaxation solution can be chosen, or maybe only if it exceeds a minimum value,
such as 0.5. Perhaps, only certain types of bidlines should be set to 1 in this process,
say only perfect bidlines, or only bidlines that meet at least one purity rule. Different

fixing rules will be discussed in Chapter 4, but the basic heuristic is shown below.

Phase 2 MIP Clique Based Fixing Heuristic

Use column generation to find optimal solution to LP relaxation of Phase 2
MIP.
Sort cliques by size smallest to largest.
Initialize set S to contain sorted cliques.
For each bidline determine number of cliques to which it belongs.
While S # 0
Find smallest clique that has a bidline that meets the fixing rules.
Fix bidline to 1.
Perform any necessary operations on S based on fixing rules.
Resolve LP relaxation.

Solve to optimality Phase 2 MIP with fixed variables.

The necessary operations to be performed on S fall into two categories. First, once
a bidline has been fixed to 1, all cliques that it is a member of will be removed from
S as those rows in Phase 2 MIP are tight. Second, fixing a bidline to 1 also fixes
many bidlines to 0. It can turn out that a clique’s members not set td 0 no longer

meet any of the fixing rules, and that a clique can be removed from S.
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Once an optimal solution to Phase 2 MIP is found using the clique based fix-
ing heuristic, a determination is made as to whether or not Phase 3 is necessary. If
The solution to Phase 2 MIP meets the requirements for a schedule then Phase 3
is not necessary, otherwise all bidlines that are perfect or are day pure are fixed and

Phase 3 will begin.

3.3.3 Phase 3

This section presents the Phase 3 mathematical formulation, and solution methodol-
ogy. First, the Phase 3 problem is discussed. This is followed the description of the

Phase 3 mixed MIP. Finally, the Phase 3 MIP solution algorithm is discussed.

3.3.3.1 Problem Description

Phase 3 is completely different than Phase 1 and Phase 2. In Phase 3 the entire
problem is solved at once. This is possible now as the fixed bidlines from Phase 2
significantly reduce the size of the problem. The phase 3 MIP then is exactly the
same as Phase 2 except it does not have as many pairings that need to be covered.

Phase 3 MIP shows the formulation used.
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Zf =

Yi =

Phase 3 MIP
F n
minZa:f + ZC]'CL']‘ + szz
f=1 =1
subject to
F n
ZB,-fa:f+ZBU3:j+y¢ =1 fori=1,...,m

=1
;€ BT forj=1,...,n
zp=1 for f=1,...,F

y; >0 fori=1,...,m

the number of bidlines generated

the number of dated pairings

the utility of using bidline j in the schedule.

1 if dated pairing 4 is used in bidline j, 0 o.w.

1 if dated pairing ¢ is used in bidline f, 0 o.w.

the pay and credit for dated pairing <.

the amount of pay and credit in minutes allowed to be not scheduled for
line crews for the bidperiod

1 if bidline j is chosen, 0 o.w.

1, and are the bidlines fixed from Phase 2.

1 if dated pairing 7 is not scheduled to a line crew, 0 o.w.

48




3.3.3.2 Solution Procedures

Phase 3 combines some of the techniques used from Phase 1 and Phase 2. None of the
heuristics are used though, since the problem is small, but the enumeration techniques
from both are used as well as delayed column generation. Since the purity rules are
important in Phase 3 also, it makes sense to try and solve Phase 3 sequentially in
terms of the number of unique pairings in each pattern. The fewer the unique pairings,
the more likely it is to generate a pattern that is trip pure. The Phase 3 algorithm is

as follows:

Phase 3 MIP Solution Algorithm

Initialize num._unique_pairings to 1.
Solve LP relaxation of Phase 3 MIP with only columns from Phase 2.
While num_unique_pairings < 4

While columns built using num_unique_pairings price out to enter

basis.

Use column generation to solve the LP relaxation of Phase 3
MIP
num_unique_pairings + +

Solve Phase3 MIP using all columns from column generation.

3.4 Conclusion

The circadian rule set outlined in this Chapter addresses many of the concerns related
to fatigue for airline crew members. They try to establish and maintain a schedule

that will allow pilots to adjust their sleep patterns like any other shiftworker. These
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rules along with educating pilots about the causes of fatigue, and ways to mitigate
these causes should serve to help reduce the amount of fatigue induced by the 24-

hour-a-day operations of the airline industry.

The three phase approach to solving the bidline generation problem reduces at each
stage the size of the problem being solved. These smaller problems then should be
able to be solved using heuristics to get fast and good solutions. The final solution
produced by either Phase 2 or Phase 3 should meet all real world constraints for a

working schedule.
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Chapter 4

Implementation and Testing

4.1 Implementation

All of the algorithms used to solve the 3 phase approach and bin packing problems
were implemented in Microsoft C++ version 6.0 and used the callable libraries of
CPLEX version 6.5. All test runs were made on a PC with an Intel Pentium III 500

MHz processor and 384 Megabytes of RAM.

4.1.1 Phase 1l

In this section the choice of enumeration versus dynamic programming for solving
COLGEN directly will be discussed. Then the column generation technique em-
ployed will be outlined in detail. Finally, the maximal column heuristic for solving

Phase 1 MIP is described.

Using a commercial solver to solve COLGENF directly was the first consideration. Af-
ter testing, however, simply adding the best column at each iteration caused slow con-
vergence to the LP relaxation optimal solution, and did not provide enough columns
to find a good integer solution when the column generation was finished. A method

was needed that was designed to find more than just the best column. As mentioned
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earlier, dynamic programming has been used to solve multi-objective knapsack prob-
lems, and depending on how the dynamic programming array is stored, all of the

good columns can be found quickly in the array.

In trying to solve COLGEN, there are six objectives to satisfy; minimum and max-
imum pay and credit, the number of work days, the number of pairings in a pattern,
and the start and end of the rest window. The dimension of this array can be reduced
by leaving out the minimum credit constraint by post processing the array and tak-
ing only those patterns that meet the minimum credit. It can be further reduced by
preprocessing the valid rest windows, and set an indicator if pairing ¢ is a member of
rest window r. Finally, the last dimension is the pool of pairings to choose from to

form a pattern.

Let f(i,j,k,l,7) be the maximum “utility” achieved by choosing among pairings

1,2,...,% with nuMpairings < J, MUMworkdays < K, NMUMcredit < [, and Restg,r+ and

Rest,,q within the rest window r. Then
F(m, MaZpairingsy MaTworkdays, MaTcredit, anty valid rest window)

needs to be computed, where m is the number of pairings and 0 < s; < b;, for

1=1,2,...,m. Using dynamic programming then, the recursion is
f(iuja k,l,’f‘) = O<ma‘2(b{/"‘15z + f(Z - 17.7 — Si, k— disi;l - C,;Si)}
where all variables are as described in Chapter 3. While this is a feasible way to

generate columns, it turns out in this case not to be efficient. The size of the dynamic

programming array is

NUMpairings X Maxpairings X Ma'xworkdays X Ma$medit X TOtalrestwindows-
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In the first test case; nuMpgirings = 25, M Zpairings = 7, M0Tyorkdays = 14, MaZcreqit =
4620, and T'otal,estwindows = 113. With these values, the array has more than a billion
elements. The actual number of elements can be reduced by preprocessing the actual
amounts of credit that are attainable. That is every value of credit from 1 to Maz redit
is not attainable based on the amount of credit for each pairing. This preprocessing,
however, did not change the order of magnitude of the size of the array. With these
large dimensions, it is computationally expensive to iterate through all of the possible
combinations, not to mention the amount of memory required to store such a large
array if you want to be able to choose more than just the best column. It happens

that implicit enumeration of the patterns is much more efficient.

During the implicit enumeration the cardinality of a pairing in the pattern is in-
creased while it still meets all of the constraints in equations (4) - (6), and has a valid
rest window. If at any time during the building of the pattern, the minimum credit
constraint, equation (7), is also met, then the pattern is valid. By sorting the pairings
in order of largest to smallest amount of pay and credit, when a pattern fails to meet
all of the constraints in COLGEN minus the minimum credit constraint, the current
pattern is backtracked on by removing one instance of the last pairing in the pattern,
and adding one instance of the next smallest pairing in terms of pay and credit, and
the pattern generation process begins again. Since pay and credit and the number
of workdays are highly correlated, this sorting of the pairings helps reduce the total

number of patterns that need to be checked.

The main reason that implicit enumeration is more efficient for this problem, is the

fact that the total number of patterns possible is not enormous, while the dimensions
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or in this case the righthand sides can be quite large in dynamic programming terms.
In all of the test cases the most patterns ever generated was around 400,000. Since
all of the patterns are quickly generated, the starting set of patterns that begin the
delayed column generation need to be chosen. In general, a simple set of patterns
to choose to start the bin packing or cutting-stock problem is the set of maximal
columns for each size of final. The equivalent patterns for the Phase 1 problem would
be those patterns that use each pairing maximally. Even easier than this is to start
with all patterns that use fewer than 3 or 4 different pairings. In practice, this will be
less than 5000 columns and many times these are all the columns necessary to find

an optimal solution to the LP relaxation of the Phase 1 problem.

Since implicit enumeration is used for the column generation, an efficient way to
find the reduced cost of each column is needed. During enumeration, the number of
times a pattern has been backtracked is counted and stored with each pattern. Since
each subsequent column is similar to the preceding column except for any backtrack-
ing done during the enumeration, the reduced cost can easily be calculated and stored
in an array by pattern element. Now, the next calculation can be started from the
backtracking point instead of starting the calculation over from the beginning. For

example, if the first three patterns were

111222,
1112223, and

1112233.
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They would be stored as

0111222
61112223

51112233,

where the first number tells us how far in the reduced cost array to start the next
calculation. Now, let MaZpuirings = 9, and the dual values be p; = 2.5, yo = 1.5, and

u3 = 4.0. The reduced cost array for the first pattern would be

25 50 75 90 105 120 0.0 0.0 0.0

The next pattern says to add another calculation to the array. So calculation will
start with the 12.0 and simply make one addition operation to get 16.0 and add that

new element to the array, which would then look like

25 50 75 9.0 105 120 16.0 0.0 0.0

Pricing out the next pattern says to start with the fifth element in the reduced cost
array, which is the value 10.5 then two addition operations are made and the new

reduced cost array is

25 50 75 9.0 105 145 185 0.0 0.0

Using this method, instead of making 17 addition operations, only 8 are made. A

significant savings in time when pricing out many patterns.

So, implicit enumeration was chosen as the way to generate columns in the delayed
column generation technique. At each iteration, at most 50 columns are added to the

problem. It turns out however that with the choice of a starting set of patterns, the
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delayed column generation routine was used less than 10 times for any test case.

Once a final set of columns had been found, the integer solution for Phase 1 MIP
needs to be found. The maximal column heuristic was used here, and as with the
bin packing example every column generated was made into a maximal column as

well. To use this heuristic, the first concern is the upper bound on a maximal column.

Since a bid period corresponds to a months worth of work, many of the righthand
sides of Phase 1 MIP are 30 or 31. Using equation (2) gave upper bounds for some
patterns in the range from 10 to 30. Thinking about the problem, however, these
upper bounds are too high. If a day pure bidline is repeated, the most it can be
repeated is 7 times, one instance beginning on every day of the week. Even for a
non-day pure bidline, day shifting more than 10 times is difficult. For this problem
then the upper bound on a maximal column was chosen to be k; = inf{7, equation
(2)}. With the introduction of the maximal columns, and their associated binary

variables, also comes the opportunity to add some constraints to the problem.

Even with the upper bound on maximal columns being held to no more than 7,
many of the terms M P;; are greater than half of the righthand side value D;. When
this happens a clique can be built for each pairing. That is, among these variables
only one can be positive. This logic of cardinality sets can be continued, not just for

one positive variable, but for any integer k.
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Let

D; D;
Cik={j3 ZMPij>“k—}, (23)
then constraints of the form

> 2 <k (24)

J€Cik
can be built. These constraints will be built for each ¢ = 1,2,...,m and k£ =
1,2,...,6. These constraints say that among a set of binary variables, because of

the right hand side value and the value of the coefficients of the pattern at each pair-

ing, at most k of the variables in the set may be positive.

Now that a bound on the number of times a pattern is represented in a maximal
column has been selected, the value to use for BONUS for each maximal column
must be determined. The value here will be determined by how important purity
rules are. To give the problem incentive in the minimization, all maximal columns
will have a negative coefficient. If a maximal column is trip pure, BONUS,.; = —k;,
and if it is not BONUS,+; = —0.1. Also, for this problem c¢; = 1 for all trip pure
patterns, and ¢; = 10 otherwise. Now the final problem can be sent to CPLEX to

find a solution.

Even with the maximal columns, Phase 1 MIP can still be difficult to solve. An
optimal solution in terms of objective value however is not necessary. Instead all that
is needed is a feasible solution, and a fixing heuristic can be used to speed up finding
a good feasible solution. There are three settings on the fixing heuristic. The first

setting turns off the fixing heuristic. The next setting solves the LP relaxation of
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Phase 1 MIP with the columns generated as described above. Any maximal col-
umn with a solution value of 1.0 is fixed, and then the problem is sent to CPLEX for
integer optimization. For the third setting, the LP relaxation is solved using different
techniques, which finds different maximal columns at a value of 1.0. These different
techniques are iteratively solved and each time any maximal column is found at a
solution value of 1.0, it is fixed. This setting usually results in more fixed variables
than the second setting, however, it can leave the problem integer infeasible. It may
take a couple of runs to determine which if any of the fixing heuristics are necessary
for a given instance of the problem. The default used was the third setting as it gave

much faster solution times to the Phase 1 problem.

Along with the fixing heuristic, a bounding technique was implemented during the
branch and bound portion of CPLEX. Looking at the objective function value at
integer feasible points, it is a step function. Any time a maximal column is chosen,
there is a step in the value of the objective function. Noting this, when ever an integer
solution is found, the next best integer solution can be determined. Usually, a branch
and bound technique uses the current best LP solution to prune branches. With this
step in the objective function, the upper cutoff for CPLEX can be set to slightly less
than the next best integer solution. Doing this eliminates the need to explore any

branches whose LP solution is larger than the next best integer solution.

4.1.2 Phase 2

Like Phase 1, enumeration is used to generate all possible feasible bidlines. Again
this has proven faster than other techniques such as path search techniques in the

DAG formed by the dated pairings. The same pricing scheme as for Phase 1 is used to
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quickly price out all of the bidlines generated. Next, the number columns to be added
at each iteration of the column generation scheme has to be set. Some techniques
add many columns at each iteration, and then remove all but the basic columns or
all but the columns with near zero reduced cost. In these techniques, once an opti-
mal LP relaxation solution is found, all columns are priced out one final time, and
all columns that meet a minimum reduced cost are added back to the problem for
solution. This works well for problems in which the objective function is well defined.

This technique does not work well with the Phase 2 problem.

Usually, the objective function in an optimization problem is used to differentiate
between the values of different options or variables. The cost of implementing an
option, the actual value of a product, or even the amount of waste in an option are
all good ways to assign an objective value. For the Phase 2 problem, the goal is to
cover all the dated pairings with a specific number of bidlines. This turns the prob-
lem from an optimization problem to a feasibility problem. Trying to differentiate
between two bidlines is difficult. There is not inherent value of a bidline to optimize,
instead you have to use a utility function based on the characteristics of the bidline.
The characteristics chosen here were purity rules met, pay and credit, total days off,

and the size of the largest continuous block of days off.

Purity was chosen since that is a stated goal of the schedule. The pay and credit
levels were chosen to try to meet the requirement to get enough bidlines for all the
crews at a crew base. The break points depend on the amount of flying available at
a crew base, and the load level per crew desired. Too many bidlines with large credit

means fewer crews will be needed, similarly, too many bidlines with small amounts of
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credit will means more line crews are needed. Total days off was chosen to force the
flying to be done in as few trips as possible. This goes along with the largest block
of continuous days off characteristic. If bidlines can be made with 7 or more days off
in a row, things like recurring training and vacations can be placed at those times
without impacting the whole months schedule. The problem then is to get agreement
on the value of trip purity versus day purity, and 14 days off versus 18 days off.
Once weights have been assigned to each of the possible outcomes, each bidline can
be given a utility by simply adding all of the weights for the characteristic levels it
meets. Table 9 shows the 4 characteristics with their 3 levels and weights. The 4
characteristics and 3 levels produce 81 possible combinations, but only 72 different

values for the objective function.

Table 9: Bidline Characteristics Used for Utility Function

. . Total Days | Largest Block of
Purities Met Pay and Credit Off Days Off

Type | Val Amount Val | # | Val Days Val
Perfect | -240 | < Mingreqir + 120 mins | -5 | <14 1 <3 days 20

Mincredit + 120 mins to
Day |-160 Ma.g — 120 mins -10 [ 15-17 | -5 | 4 to 6 days | -10

Trip 80 | > Mazcregir — 120 mins | -2 | >18 | -10 | > 7 days | -30

The weights chosen for the purity levels were done such that there are four types of
bidlines when looking at the objective values. If the objective value is less than -220
then the bidline has perfect purity, if it is between -220 and -141 inclusive it has day
purity only and finally if it is between -140 and -61 inclusive it has trip purity only.
Any value between -60 and 19 means that the bidline has some characteristic that

has been identified, but is not a pure bidline. Now that an objective function can
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be applied to the problem, solving the LP relaxation by column generation can be

discussed.

It is well known that the LP relaxation of the set partitioning problem is highly
degenerate. The SIMPLEX method stalls and makes numerous degenerate pivots
trying to find the optimal solution to these problems. Even commercial solvers like
CPLEX take minutes to solve each iteration, even with a starting basis of the last
solution. Knowing this, a way to solve the column generation problem at each it-
eration quickly is needed. Two methods presented themselves. First, interior point
methods have been shown to be very effective in solving these problems. CPLEX’s
barrier method solved instances of the phase 2 problem in less than 30 seconds, where
CPLEX'’s SIMPLEX solver took more than 8 minutes. Another method that proved
useful was Gopalakrishnan’s NNLS method [13]. This solution technique unlike SIM-
PLEX is not restricted to the vertices of the solution space, but can stop on a face
of higher dimension. In n dimensions, instead of stopping at a point (z1,Za,...,Zn)
that is the intersection of at least m half spaces, the NNLS method allows the use
of points defined by less than n half spaces. Using these points, the NNLS algo-
rithm does not make degenerate pivots [13]. While test cases were run using the
NNLS method, for ease of portability and time, CPLEX’s barrier method was used

in the final Phase 2 algorithm to solve each iteration of the column generation scheme.

Once the barrier method was chosen to solve each iteration of the column gener-
ation, the number of columns to add was determined. As mentioned earlier some
methods remove all added columns at each iteration and then do a single pricing out

at the end. This did not work for Phase 2. At optimality, too many of the bidlines
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Table 10: Pairing Numbers for Reduced Cost Example for Phase 2.

Obj Val |-130 | -130 | -130 | -130 | -130 | -130 | -130 | -130 | -130 | -130 | -130
15 Pairing | 4 50 96 142 | 188 | 280 | 326 | 372 |418 |464 | 510
274 Pairing | 908 [ 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908 | 908
374 Pairing | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200

look similar in terms of reduced cost. Table 10 gives an example of how this hap-
pens. Table 10 shows 11 bidlines and their objective values. When only rows 908
and 1200 have been satisfied, these bidlines will all price out differently depending
on how satisfied the row is that corresponds to the first pairing. At optimality, if
all rows shown in Table 10 are satisfied then the reduced costs of these rows will be
zero. If all of these columns are added to the Phase 2 problem at most one of them
can be picked in an integer solution. So it may be that not enough other columns
for the rows in the first pairing have been added, and once one of these bidlines is
chosen then that pairing will be forced to be uncovered. Likewise, if row 908 or 1200
is not satisfied, then its associated dual value will be the big M. This dual value will
dominate any other dual values, and again all of the columns in Table 10 will want to
enter the problem. One way to fix this problem is to perturb the objective function.
A small random number can be added to each objective value to make it slightly
different from the rest. To further ensure enough columns for each pairing end up in
the Phase 2 MIP, and to give the MIP more room to make choices, at each iteration
of the column generation up 1000 columns are added and never removed from the
problem. At optimality, some of the columns entered at the first few iterations have
a chance of having a large reduced cost, and might help the first condition. Adding
1000 columns seems to be enough to ensure that not just the columns in Table 10 are

entered at any iteration, and other columns with the same pairings will also enter.
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Once the column generation portion to solve the LP relaxation of Phase 2 MIP is

finished, the clique based fixing heuristic begins.

For the clique based fixing heuristic the following rule set was used to determine when
and which columns to fix. Continuing along with the importance of purity, only per-
fect and day pure bidlines whose solution value of the LP relaxation is greater than
or equal to 0.5 will be fixed. These types of bidlines were chosen as the blocks of days
off between each trip leave room for more perfect and day pure bidlines to be built
in Phase 3 if necessary. Once the heuristic has finished the fixed Phase 2 problem is
solved using CPLEX’s MIP solver routine. Here CPLEX is limited to explore only
5000 nodes. Even with the fixed columns, the Phase 2 problem is still a large set
partitioning problem and is difficult for CPLEX to solve. By the end of 5000 nodes,
the best integer solution is usually within 5% of the best LP relaxation solution, and

sometimes, if enough variables are fixed, the fixed problem will fathom to optimality.

4.1.3 Phase 3

In Phase 3 the enumeration techniques of Phase 1 and Phase 2 are combined to find
every legal bidline that can be built out of any remaining pairings from Phase 2. The
number of bidlines generated in Phase 3 has the potential to be in the millions. The
Phase 3 algorithm goes through the bidlines in order of the number of unique pairings
used to build the bidlines. At any iteration of the Phase 3 algorithm, if less than 5000
bidlines are generated, all are added to the Phase 3 MIP. When at least 5000 bidlines
are generated, the Phase 2 delayed column generation algorithm is used to select the
columns added to the Phase 3 MIP. This is continued until all bidlines generated from

4 or less unique pairings are generated or all of the parings are covered by the current
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LP relaxation solution. Experience shows that while there are other bidlines that can
be generated, their objective value is small and would not make a good bidline for

the final schedule.

Once all the columns have been added to the Phase 3 MIP, it is solved using CPLEX’s
MIP solution routine. Again, the number of nodes to be checked by CPLEX is lim-
ited. In Phase 3 this number is 15,000. In many cases, the IP actually stopped before

this node limit with a completely fathomed solution.

4.1.4 The Bin Packing Problem

All the techniques discussed for solving the Phase 1 problem were implemented in
solving the bin packing problems. There are some slight differences between the two
cases however when using enumeration. The biggest difference between bin packing
and cutting-stock patterns is the maximality of the pattern. For the cutting-stock
problem the large righthand sides dominate the number of times a final can appear
in a pattern. For bin packing, this is not always true. The righthand side may be
smaller than the number of times the smallest item can be placed in the bin. In these
cases, the enumeration scheme for the patterns must be changed. Now patterns are
allowed that are not maximal in terms of total measurement. Instead, they will be
maximal with respect to the maximum number of times a item can be placed in any
one pattern. Another way to account for this difference is to change the equality
constraints to greater than or equal to constraints. If an optimal solution exists at
equality for all constraints, then the same optimal solution will exist and be found
in the relaxed version of the problem as well. The benefit of relaxing the problem is

that the problem may be solved using only maximal patterns, and then the patterns
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can be post processed to remove any extra items. In this way, the algorithm need not

be changed.

4.2 Results

4.2.1 Three Phase Approach to Crew Scheduling

The 3 Phase approach was used on 3 different sets of pairings. The pairings for Test
Cases 1 and 2 were generated from 139 flight legs and two crew bases of a short
haul F100 fleet. This was not all of the legs for the fleet, but a subset that could
be covered by the two crew bases. Each case represents one of the crew bases. All
legs were assumed to be flown every day of the bid period. For Test Cases 3 and
4, the actual pairings of a Boeing 757/767 fleet from a major U.S. air carrier were
used. The 757/767 fleet was used to ensure that “red-eye” flights would appear in

the pairings. The characteristics of each test cases are shown in Tables 11 through 13.

Table 11: Test Case 1 Pairing Data

Pairing Pay Block Time per Day Rest ori] Restond Total

Id and min’s min’s Days

Credit 1 2 3 4 Flown
0 468 468 0 0 0 1140 2100 30
1 941 369 | 290 | 282 0 1140 1754 30
2 611 290 | 321 0 0 1140 1818 30
3 606 320 | 286 0 0 1140 1815 30
4 1043 440 | 299 | 284 0 1159 1784 30
5 971 342 | 323 | 284 0 1391 2100 30
6 573 317 | 256 0 0 1281 2100 30
7 300 300 0 0 0 1140 2100 30
8 313 313 0 0 0 1140 2100 30
9 953 330 | 330 | 293 0 1416 2045 30
10 907 240 | 302 | 365 0 1397 2100 30




Table 11: (cont’d)

Pairing Pay Block Time per Day Restsyort| Restena Total

Id and min’s | min’s Days

Credit 1 2 3 4 Flown
11 314 314 0 0 0 1140 2100 30
12 368 368 0 0 0 1140 2100 30
13 316 314 0 0 0 1140 2100 30
14 1060 503 | 266 | 272 0 1359 2092 30
15 635 254 | 381 0 0 1140 1754 30
16 274 274 0 0 0 1140 2100 30
17 361 280 0 0 0 1140 1756 30

Table 12: Test Case 2 Pairing Data

Pairing Pay Block Time per Day Rest iori| Restend Total

Id and min’s min’s Days

Credit 1 2 3 4 Flown
0 239 239 0 0 0 673 1830 30
1 180 174 0 0 0 634 1845 30
2 194 194 0 0 0 658 1855 30
3 277 261 0 0 0 846 1860 30
4 576 133 | 396 0 0 553 1784 30
5 840 431 | 229 | 128 0 1156 1769 30
6 946 423 | 175 | 338 0 1398 2001 30
7 916 328 | 408 | 108 0 1209 1810 30
8 1059 233 | 449 | 359 0 1245 1898 30
9 360 135 | 135 0 0 1115 1799 30
10 197 197 0 0 0 1259 2425 30
11 538 123 | 358 0 0 1173 2129 30
12 918 127 | 293 | 395 0 1237 1890 30
13 976 354 | 259 | 331 0 1344 2137 30
14 981 251 | 330 | 390 0 1401 2090 30

Table 13: Test Cases 3 and 4 Pairing Data

Pairing Pay Block Time per Day Restgiort] Restend Total

Id and min’s min’s Days

Credit 1 2 3 4 Flown
0 695 325 | 370 0 0 1235 1940 31
1 656 322 | 334 0 0 1425 2155 31
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Table 13: (cont’d)

Pairing Pay Block Time per Day Restgtort| ReStend Total

Id and min’s | min’s Days
Credit 1 2 3 4 Flown

2 1221 | 397 | O | 430 | 394 965 1770 31
3 1448 | 463 | 295 | 343 | 347 | 1327 2065 29
4 1440 | 478 | 239 | 338 | 375 | 1306 2080 31
5 1450 | 373 | 385 | 356 | 336 | 1332 2045 10
6 1450 | 373 | 385 | 356 | 336 | 1332 2045 20
7 798 443 | 355 | O 0 956 1815 31
8 1402 | 369 | 269 | 282 | 475 | 1396 2250 28
9 1262 | 321 | 384 | 279 | 278 | 1370 1785 24
10 1262 | 321 | 384 | 279 | 278 | 1370 1785 4
11 706 351 | 355 | O 0 1201 1865 31
12 1057 | 370 | 339 | 348 | O 1225 1975 30
13 1427 | 378 | 385 | 347 | 317 | 1235 1800 31
14 1373 | 353 | 360 | 314 | 265 | 1339 2310 5
15 1373 | 353 | 360 | 314 | 346 | 1339 2310 24
16 1373 | 254 | 360 | 314 | 346 | 1339 2310 1
17 694 454 | 192 | O 0 1371 1965 31
18 1200 | 335|394 | 347 | O 1260 1630 1
19 690 325 1365 | O 0 875 1760 1
20 657 360 | 297 | O 0 1092 1800 1
21 671 209 | 277 | O 0 1247 1870 1
22 596 296 | O 0 0 1301 2085 1
23 300 106 | O 0 0 1371 2550 1
24 919 315 | 240 | 364 | O 1670 2295 31
25 1228 | 295 | 381 | 275 | 277 | 1660 2365 31
26 1594 | 219 | 474 | 459 | 421 | 1165 1785 31
27 1206 | 285 | 309 | 315 | 297 | 1590 2235 31
28 1466 464 | 442 | 264 | 296 1639 2085 31
29 1215 | 395 | 338 | 375 | O 1706 2255
30 900 376 | 336 | O 0 1706 2375
31 481 160 | O 0 0 1540 2270

32 1441 328 | 295 | 343 | 347 | 1327 2065

33 1448 463 | 295 | 115 | 347 | 1327 2065

34 1418 | 373 | 248 | 356 | 336 | 1332 2045

35 1402 369 | 269 | 116 | 475 | 1396 2250

36 1402 | 369 | 269 | 116 | 475 | 1396 2250

[UEEY RYIIY RYTRIY QYUY JEVSRY BTy J WO JUUSEY SOy

37 995 95 [ 380 | O 0 1270 2040
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Table 13: (cont’d)

Pairing Pay Block Time per Day Rest o Restena Total

Id and min’s min’s Days

Credit 1 2 3 4 Flown
38 739 370 0 0 0 1330 2160 1
39 1385 300 | 153 | 282 | 475 1396 2250 1
40 715 0 375 0 0 1245 2220 1
41 1249 321 | 69 | 279 | 278 1437 1785 1
42 1249 321 | 69 | 279 | 278 1437 1785 1
43 1267 321 | 384 0 278 1370 1785 1
44 1080 370 | 254 | 348 0 1316 1975 1
45 1373 353 | 246 | 314 | 346 1339 2310 1

All pairings except those for Test Cases 3 and 4 were built using the rest window in-
tersection rules outlined in Chapter 3. Since the pairings in Test Cases 3 and 4 were
existing pairings, the rest window intersections were calculated by applying as many
of the rules from Chapter 3 as possible. The rest window intersection was chosen to
be the largest continuous period of time such that no duty occurred during this time
on any days of the pairing. For the bidline generation, Test Case 1 was run with 10,
9, 8 and 0 hour rest window intersections. Test Case 2 was run with 9, 8, 7 and 0 hour
rest window intersections since pairings 6 and 7 barely have a 10-hour rest window
intersection, and do not share that window with many other pairings. Finally, Test
Cases 3 and 4 were run at 5, 4, 3 and 0 hours of rest window intersection, since the
smallest rest window for any of the pairings in Test Cases 3 and 4 was 5 hours and

48 minutes.

Since Test Cases 1 and 2 do not have a known solution and a rest window inter-
section of zero hours does not exclude any patterns or bidlines from being built, all

comparisons for these test cases will be made against the solution for the 0-hours rest
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window intersection. To account for possible infeasibilities, a goal of 8000 minutes

was set for the amount of pay and credit to be allowed to be not scheduled.

The variables shown in Table 3 were set to different levels depending on the data
for each case. While most of the values are easily set, MaZ req:: and Maz g, must be
set with care. In Phase 1 and the pattern generation portion of Phase 3 the actual
dates that pairings will be flown on are not known. A bidline that has a multi-day
pairing that starts near the end of a bid period may not have all of the days of the
pairing actually flown during the bid period. In these cases the actual pay and credit
will be less than that calculated for the pattern that generated the bidline. Figure 4

shows an example of how this happens. The first row is a bidline with a 4-day pairing

Days of the Marth Total Pay
1]213]4]56]7(8[ol10]11|12}131415 |16 17 18 19 |20[21 [22|23|24]25 26|27 | 28|29 30|31 [and Crecit
515(5] 9 5 5] 55 50 5[ 5] 5 5 5{ 5| 5] 4800

515 5[ 5 5 5[ 5] 5 51 5] 55 5 5| 5| 4500

5[ 5] 5] 5 51 5] 5|5 50555 5| 5| 4200

Figure 4: Mazeq: Calculation Example

repeated 4 times during the bid period. It is a perfect bidline as it is trip and day
pure. Each day of the pairing, there is 5 hours of pay and credit. The bidline then
has a total pay and credit of 4,800 minutes. If Maz eq: is set below 4,800 minutes,
say at 4,680 minutes, then the pattern used to generate this bidline would not be
allowed in Phase 1. By not allowing this pattern in Phase 1, the next two bidlines

of Figure 4 would not be generated. Unfortunately, both of these are perfect bidlines
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that meet the Maz eq;: Tule. To keep from missing what could be good patterns and
therefore good bidlines, the value for MaZcreq:: in Phase 1 will be increased by the

amount of the largest pairing in the test case rounded up to the nearest hour.

For Mazy, there are several things that must be considered. First, the FAA re-
quires that no more than 30-34 hours of flying be scheduled for any seven-day period
depending on the type of flying operations to be performed. For planning purposes,
that would mean a four day pairing would have between 7% and 8% block time each
day. This would be excessive for any crew. Second, the real world data in Test Case
3 had bidlines that flew almost 27 hours in a seven day period. This equates to a
little less than 7 hours of flying each day. A large amount of flying, but manageable.
Finally, another maximum can be calculated by taking the maximum between the
largest 4 day pairing and twice the largest 2 day pairing in terms of flying hours. In
the event that there are no four day pairings, the value for the four day pairing can
be replaced by the sum of the largest three day and one day pairings. The minimum
of these three values rounded up to the nearest hour was then used for the value of

Ma:cfly.

All of the values chosen for each case are shown in Tables 14 - 16. The value for
Min . eq: in Test Cases 1, 3 and 4 was based on the rounding down to the nearest
hour the smallest bidline in the known solution of Test Case 3. Mazcreqiz Will be
just ten hours more than Ming.q: in these cases. For Test Case 2, Mincreai: had
to be reduced to 62 hours as there are pairings that were generated that have very

little pay and credit; specifically, pairings 1, 2, 9 and 10. The maximum number of
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Table 14: Test Case 1 Parameters

Rest
Nfl’lrlll; er Mineredit | Magereas | M ATpairings M ATyorkdays Mazx fly IIIZ;‘ISISCC::Z)H
(min’s)
1 4080 4680 9 18 26 600
2 4080 4680 9 18 26 540
3 4080 4680 9 18 26 480
4 4080 4680 9 18 26 0

pairings, MaZpairings, was chosen to be 9 for Test Cases 1, 3 and 4 as it will allow
for a 2 day pairing to be flown twice a week, and once during the partial week of a
month. While this is type of bidline will be heavily penalized in its objective value for
not having many days off, it still can produce perfect bidlines. It is important to note
that Maz,girings is the only variable that is not associated with a constraint that must
be met due to regulations or negotiations. Instead, it is used to limit the number of
patterns and bidlines generated. For that reason, Test Case 2 had MaZpqirings set to
11 as it needed more bidlines to find a solution. MaZ,orkdays Was sét at 18 for Test
Case 1 to correspond with the 2-day pairings flown twice each week, while for Test
Case 2 it was set at 20 to allow for 5 days of work on each full week of a month. For
Test Cases 3 and 4, MaZyorkdays Was set at 16 as none of the known solution bidlines

had more than 16 days of work in it.

The results for all of the runs are shown in Tables 17 through 19. Table 17 shows the
values associated with parameters that can be used to measure how well the quality
of life issues were met. Tables 18 and 19 show the varying levels of rest window in-

tersection achieved by the solutions. All of the solutions for Test Case 1 maintained
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Table 15: Test Case 2 Parameters

Rest
Run . Window
Number Mincredit| MaZeredit Maxpairings Mazworkdays Mawfly Intersection
(min’s)
1 3720 4680 11 20 26 600
2 3720 4680 11 20 26 540
3 3720 4680 11 20 26 480
4 3720 4680 11 20 26 0
Table 16: Test Cases 3 and 4 Parameters
Rest
Run . Window
Nurlrllb or Mincredit| Mazeredit Mampairings Mazworkdays Maxfly Intersection
(min’s)
1 4080 4680 9 16 27 300
2 4080 4680 9 16 27 240
3 4080 4680 9 16 27 180
4 4080 4680 9 16 27 0

the number of crews required to cover all the pairings. There was also no significant
change in the number of bidlines that met some purity rule. For the other set of
short haul flights, Test Case 2, similar results held once the value for Minc eq:: Was

adjusted to account for the poor pairings generated from the incomplete set of legs.

For Test Case 3 there was a significant difference between the solution found by
the airline and that found by the three phase solution methodology. First, the num-
ber of crews required to cover all the pairings and the amount of pay and credit left
uncovered was less for the three phase approach. Fewer crews means less overhead

for the airlines and a savings in personnel costs. Unscheduled flying hours cost the
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Table 17: Results for 3 Phase Algorithm

Test Case Tgtal Pairings Pay apd Perfect Day Trip
Run Line Uncovered Credit Bidlines Pure Pure
Number Crews Uncovered Bidlines| Bidlines

1.1 72 17 6735 6 52 2
1.2 73 8 3448 17 44 0
1.3 72 16 5973 11 49 1
14 72 16 5952 12 46 3
2.1 61 40 9762 24 12 4
2.2 61 39 8966 27 15 14
2.3 61 21 6226 19 23 11
2.4 61 31 7714 17 20 14
3.1 150 3 2394 45 68 19
3.2 149 8 6791 31 34 19
3.3 151 4 3088 39 88 12
34 150 5 3744 47 78 11
4.1 148 8 6022 6 79 4
4.2 149 12 12208 44 103 1
4.3 150 7 5500 47 99 2
4.4 150 4 2805 54 94 2

Known Sol. 151 6 4076 7 2 101

airlines more than scheduled flying hours, so the lower amount of pay and credit
uncovered also equates to a savings for the airlines. The total number of bidlines
that met any purity rule did not change significantly. What is significant is their
distribution. There was a remarkable shift from trip pure bidlines to perfect and day
pure bidlines. This shift is a direct result of enforcing the quality of life issues during
Phase 2 and Phase 3. Test Case 4 showed the same distribution of purities met, and
maintained the amount of pay and credit uncovered as well as the number of crews

required to cover all the pairings.
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Table 18: Rest Window Results for 3 Phase Algorithm: Test Cases 1 and 2

g:z Number of Bidlines with Rest Window Intersection of
hours

Run

Number | o<z<2 | 2<e<4 | 4<z<6 | 6<z<8 | 8<z<10 £>10
14 0 0 4 7 1 60
1.3 0 0 0 0 4 68
1.2 0 0 0 0 3 70
1.1 0 0 0 0 0 72
2.4 0 0 0 11 14 36
2.3 0 0 0 16 7 38
2.2 0 0 0 0 10 51
2.1 0 0 0 0 4 57

Table 19: Rest Window Results for 3 Phase Algorithm: Test Cases 3 and 4

g::z Number of Bidlines with Rest Window Intersection of z
hours
Run
Number 0<z<2 | 2<z<4 | 4<z<6 | 6<z<8 | 8<z<10 | x>10
Known Sol. 7 7 36 19 42 39
2.4 10 18 3 33 31 54
2.3 0 10 9 69 10 43
2.2 0 0 9 59 40 41
2.1 0 0 11 50 33 56
3.4 10 22 4 32 30 51
3.3 0 10 7 65 13 56
3.2 0 0 5 62 39 44
3.1 0 0 7 48 29 64
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4.2.2 The Bin Packing Problem

For this problem, data files from OR Library as well as from the Technische Univesitat
Darmstadt were used. The test cases from OR-Library come from the instances of
the bin packing problem considered in E. Falkenauer (1994) ”A Hybrid Grouping
Genetic Algorithm for Bin Packing” Working paper CRIF Industrial Management
and Automation. The other set of test cases are from the instances considered by A.
Scholl, R. Klein, and C. Jrgens (1996): ”BISON: a fast hybrid procedure for exactly
solving the one-dimensional bin packing problem.” [21]

In the first group of test cases, there are 2 classes of bin packing instances. For the

first class of problems the following parameters were used
e n = 120, 250, 500, 1000

e ¢ =150

e w; from [20,100] for j=1,...,n
For each of the four instance classes, 20 instances were generated for a total of 80
instances. In all the instances, the data files provided a current best solution from
Falkenauer’s algorithm. To determine the goodness of the solutions, the lowest possi-
ble number of bins was calculated by taking the ceiling of the sum of the weights of all
items divided by the capacity of a bin. While this value may not be obtainable, if a
solution does obtain it, then that solution is optimal. The algorithm was able to find
this value in 79 out of 80 of the instances. In 4 of the instances a solution better than
Falkenauer’s was found. Table 20 shows the problem identifiers for the 4 solutions
that were better than Falkenauer’s. Instance u250_13 was the only instance that the
solution did not achieve the lowest possible bound. In this case all possible patterns

were enumerated, and the ceiling of the objective value of the optimal solution was
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Table 20: Solutions for First Class of Falkenauer Bin Packing Problems

Problem Lowest Falkenauer Maximal
Identifier Bound Solution Column
Solution
ul20.08 50 51 50
ul20_19 49 50 49
u250_07 103 104 103
1u250_12 105 106 105

103 bins. Both the maximal column heuristic and Falkenauer’s algorithm found this

solution.

The second class of problems has the following parameters
e n = 60, 120, 249, 501
e ¢ =100

e w; from [25,50] for j =1,...,n

The weights in this class are measured in tenths. These problems were generated so
that the optimal solution uses exactly % bins. Due to machine precision, in many
instances the optimal value of the LP relaxation’s objective function was within 107¢
of 2, but was rounded up to 3 + 1. For these problems, the maximal column heuristic
found a solution of 2 + 1. Even when the ceiling of the objective function value was
2 the maximal column heuristic was sometimes unable to find an integer optimal
solution. Again, a solution value of % + 1 was found. In some instances an optimal

integer solution was found.

These results are easily explained however. When the LP relaxation optimal objective
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value is less than that of the IP, the column generation adds columns to surpass the
IP solution. These columns often times allow the IP to find an integer optimal solu-
tion. For problems where the optimal LP relaxation solution value and IP solution
value are equal, an optimal solution must be found among just the columns needed
to find an optimal fractional solution. In these cases, there is less chance of finding
an optimal integer solution. When the problem is restricted to allow only patterns
that use 3 or more items, an optimal solution was found in all 80 instances. The
files containing the test cases as well as a full listing of the problem areas covered by

OR-library can be found at http://mscmga.ms.ic.ac.uk/info.html.

In the second group of test cases, there are three data sets each with a different

way of generating the items to be packed. Data set 1 uses parameters
e n = 50, 100, 200, 500
e ¢ =100, 120, 150
e w; from [1,100], [20,100], [30,100] for j =1,...,n

The weights are chosen as integer values from the given intervals using uniformly dis-
tributed random numbers. For each of the 36 instance classes defined by the settings
above, 20 instances are generated resulting in a total of 720 instances. Currently,
704 instances are solved to optimality. The 16 test cases that were not are shown in
Table 21 with the possible ranges of an optimal solution and the solution found by
the maximal column heuristic. The names of the instances are coded as NotCyWz_v

where
o =1 (forn="50), =2 (n=100), z =3 (n = 200), z = 4 (n = 500)
e y=1 (for c=100), y = 2 (c = 120), y = 3 (c = 150)
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Table 21: Results of Instances for Data Set 1

Problem Solution Maximal
Identifier Range Column
Solution
N2C3W2_B 42 43| 43
N3C2W1.J 86,87 87
N3C3W4.B 87,88 88
N3C3wW4_L 88,90 90
N3C3W4_N 86,87 87
N4C1W1.M 245,246 246
N4C3W4_B 214,215 215
N4C3W4_C 217,218 218
N4C3W4_E 218,219 219
N4C3W4_F 220,222 222
N4C3W4_K 214,215 214
N4C3W4_M 215,216 215
N4C3W4_0 225,227 226
N4C3W4_P 218,220 219
N4C3W4_R 213,215 214
N4C3W4.T 215,217 216

e v =A...T for the 20 instances of each class
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e z =1 (for w; from [1,100]), z = 2 ([20,100]), z = 4 ([30, 100])

The lower bound of the solution range is calculated the same as for the first group
of cases. As mentioned earlier, achieving this value guarantees optimality. However,
not meeting this value does not negate the possibility that the solution found was in
fact optimal. In all sblutions, the maximal column heuristic found an integer solution
that was equal to the ceiling of the optimal LP relaxation solution value. Since the
maximal column heuristic usually runs with a minimum capacity that a bin packing
must meet, again optimality cannot be proven by meeting the ceiling of the LP relax-

ation optimal objective value. The proven optimal solution was found in 2 cases. For




the 11 cases identified by a NzCyW4_v and for N2C3W2_B, the minimum capacity
constraint was removed from the heuristic. For all 12 cases, the solution found by the

heuristic was in fact optimal.

Data set 2 uses the parameters

e n = 50, 100, 200, 500

e ¢ = 1000

o avgWeight = £, £, %, §

o 6 = 20%, 50%, 90%
The parameter avgW eight represents the desired average weight of the items, while ¢
specifies the maximal deviation of the single values w; from avgWeight. For example,
the weights are randomly chosen from the interval [160, 240] in case of avgWeight = ¢
and & = 20%. For each of the 48 classes, 10 instances are generated resulting in a
total of 480 instances. Only 3 of these instances have not been solved to optimality.
They are listed in Table 22 along with the possible solution ranges and the maximal

column heuristics solution. Here again, the values found by the maximal column

Table 22: Results of Instances for Data Set 2

Problem Solution Maximal
Identifier Range Column
Solution
N2W1B2R0 [35,36] 36
N4W2B1R5 102,103 103
N4W2B1R6 101,102 102

heuristic were equal to the ceiling of the LP relaxation’s optimal solution objective

value. When the minimum capacity of a pattern was removed, all of these values are
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in fact the optimal solution to these instances of the problem.

The third set uses parameters
e n =200
e ¢ = 100000
e w; from [20000,35000] for j =1,...,n

This setting of the parameters guarantees that the weights are widely spread. Fur-
thermore, the number of items per bin lies between 3 and 5. Data set 3 contains 10
instances, only 3 of which are currently solved to optimality. Because the weights
are wide spread, these problem better resemble a set covering problem than a bin
packing problem. Out of the 10 instances, 3 have all of their righthand sides equal to
1, 6 have only one item chosen more than once, and one has only 3 righthand sides
greater than 1. Since these problems do not imitate the Phase 1 problem, they were

not solved.

To compare running times of the maximal column heuristic to standard branch and
bound and to determine if the heuristic does in fact choose less patterns, each of
the instances was also solved using CPLEX’s mixed integer optimizer after column
generation had been completed, but with no maximal columns added. The times for
CPLEX to find an integer optimal solution ranged from seconds to minutes depending
on the instance. The number of columns in the problem after column generation de-
termined the time needed by CPLEX to find an optimal solution. Although CPLEX
found an optimal solution in most instances as quick as the heuristic, the solutions

contained on average 30% more patterns as the maximal column heuristic.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

The 3 Phase approach to bidline generation is able to build schedules that meet the
quality of life issues with no significant increase in cost to the airlines. In all of the
test cases, the three phase approach was able to maintain or reduce the number of
line crews required to cover all the pairings regardless of the size of the rest window
intersection. The number of perfect and day pure bidlines was significantly increased
over the known solution. This may however not be a fair comparison, as the airline
from which the pairings for Test Cases 3 and 4 were run has changed it’s purity em-
phasis from trip purity to day purity in recent months. However, the total number
of pairings that met any of the purity rules was higher for all the runs in Test Cases

3 and 4 when compared to that of the known solution.

The bidlines built were more like shiftwork, and allow pilots to adjust their work-
rest schedules just once for the entire bid period. The regularity of the schedule will
also allow pilots to plan their off-duty activities in a way to minimize any fatigue as
well. While it may be preferable for an airline to maintain trip purity, the perfect

and day pure bidlines form better schedules for the pilots.
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The purity levels achieved for all four test cases indicate that not only are the number
of crews being maintained, but the trade space for doing so does not include purity.
There was no significant change in the purity levels for any of the test cases.

Not only were the solutions for the test cases good in terms of coverage and purity,
but they also were quick. For Test Case 1, Phases 1 and 2 took less than 15 minutes
total, and Phase 3 solved in less than 2 hours. For Test Case 3 the solution times for
Phases 1 and 2 were less than 3 minutes total with the entire problem being solved
in less than an hour for all instances. Test Case 4 solution times were similar to Test

Case 3.

The 3 Phase approach also builds workshifts that are not only weekly and monthly
regular, but also kept them daily regular with the rest window intersection rule. Until
now, most research into pilot fatigue has dealt with the duration of the duty or rest
period. This thesis demonstrates that the actual scheduling of the duty and rest can

be affected in such a way as to reduce the fatigue caused by 24-hour-a-day operations.

Finally, the maximal column heuristic used to solve Phase 1 worked equally as well
on then bin packing problems. When solving the bin packing problems, the heuristic
was able to find the optimal solution in almost every instance. Even when a proven
optimal solution was not found, the heuristic found a solution equal to the best-known
solution. Not only were the solutions optimal, but they used fewer different patterns.
On average, the heuristic chose 23% fewer patterns than simply solving the problem

with CPLEX.
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5.2 Recommendations

From the results of this work, incorporating a rest window rule set into an actual
airline’s pairing generator and bidline generator would be the most logical next step.
Doing this will allow other rules, unknown to this author, to be tested against the rest
window intersection rule. In addition, using a more polished code, should improve

the solution times seen in this thesis.

Actually flying a set of bidlines built with a rest window intersection, or polling
pilots about their likes and dislikes of this methodology would also be useful. The
flying of such schedules would allow data to be gathered as to whether or not a regular
schedule and sleep shift significantly decreases the fatigue felt by pilots. Any type
of polling or questionnaires would let airlines know how important these and other
quality of life issues are té the pilots. Whether or not these issues can be addressed
without significant increases in cost to the airlines will not be known until any such
study is completed and testing done. The answers, however, will give airlines ideas
as to what they can do to improve the quality of life of their pilots, and maintain the

safest airlines possible for the public.

As mentioned in Chapter 1, the duty and rest scheduling of reserve crews is also
an important aspect of airline crew scheduling. Sohoni et al have developed a re-
serve crew scheduling technique that builds bidline like schedules for reserve crews
to maintain some semblance of a normal schedule [19]. Adding to this idea would

be to determine what times scheduled crews have rest window intersections, and try
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build bidline like schedules for reserve crews that also contain a fixed rest window
intersection. This way reserve crews also would have a given period of time every day

of a bid period during which they would never be called to perform flying duties.
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